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⋆ These notes were created during my review process to aid my own understanding and
not written for the purpose of instruction. I originally wrote them only for myself, and they
may contain typos and errorsa. No professor has verified or confirmed the accuracy of these
notes. With that said, I’ve decided to share these notes on the off chance they are helpful to
anyone else.

aAny corrections are greatly appreciated.

§1 September 7, 2023

§1.1 Metric spaces

Definition 1.1 (Metric Space) A metric space is a nonempty set X together with a mapping
d : X ×X → R+ = [0,∞) with the properties:

1. d(x, y) = 0 if and only if x = y (x, y ∈ X)

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

Example 1.2 (Natural Metric). Let X be any nonempty set of real numbers and define d by

d(x, y) = |x− y|, x, y ∈ X.

This is the usual definition of distance between two points.

Proof. To prove that this is a metric, we need to show that d(x, y) satisfies the three metric
properties (M1, M2, and M3).

1. Non-negativity and Identity of Indiscernibles (M1):

We have d(x, y) = |x− y| ≥ 0 for all x, y ∈ X. Furthermore, d(x, y) = 0 if and only if x = y.

2. Symmetry (M2):

d(x, y) = |x− y| = |y − x| = d(y, x) for all x, y ∈ X.

3. Triangle Inequality (M3):

d(x, z) = |x− z|
≤ |x− y|+ |y − z|
= d(x, y) + d(y, z) for all x, y, z ∈ X.

Example 1.3 (Distance in R2). Let X be any nonempty set of points in the plane (so X may
be considered as a subset of R2) and define d by

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2) are any two points of X.

Proof. To prove that d(x, y) is a metric, we need to verify that it satisfies the three metric
properties (M1, M2, and M3).

1. Non-negativity and Identity of Indiscernibles (M1):

Note that (x1 − y1)
2 ≥ 0 and (x2 − y2)

2 ≥ 0 for all x, y ∈ X. Thus,

d(x, y) = (x1 − y1)
2 + (x2 − y2)

2 ≥ 0.

Furthermore, d(x, y) = 0 if and only if x1 = y1 and x2 = y2, which implies x = y.

3
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2. Symmetry (M2): is obvious.

3. Triangle Inequality (M3):

Definition 1.4 In a metric space (X, d), an open ball of radius r centered at a point a is
defined as the set of all points x in X such that d(x, a) < r. Formally, the open ball B(a, r)
is given by

B(a, r) = {x ∈ X | d(x, a) < r}.

Definition 1.5 In a metric space (X, d), an closed ball of radius r centered at a point a is
defined as the set of all points x in X such that d(x, a) ≤ r.

B(a)r = {x ∈ X | d(x, a) ≤ r}.

Example 1.6. We can define an alternative metric d′ on the same set X = R2 as follows:

d′(x, y) = max{|x1 − y1|, |x2 − y2|}.

This metric d′ has a different interpretation compared to the Euclidean metric. In d′, the distance
between two points x and y is defined as the maximum of the absolute differences of their
respective coordinates. This is often referred to as the Chebyshev distance or L∞ metric, and it
essentially measures the ”greatest single axis” distance between two points.

Proof.

(M1): d′(x, y) = 0 ⇐⇒ |x1 − y1| = 0 and |x2 − y2| = 0 ⇐⇒ x1 = y1 and x2 − y2 = 0

(M2): Obvious.

Example 1.7 (Euclidean metric). Let X be any nonempty subset of Rn, meaning that X consists
of ordered n-tuples of real numbers. We define the distance d between any two points x and y in
X by

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

⋆ This mapping d is commonly known as the Euclidean metric for such a set X. Henceforth, when we refer
to the metric space Rn (as opposed to merely the set Rn), we imply that the metric space (X, d) of this
example is being considered with X = Rn. In other words, any reference to the metric space Rn will always
imply that the Euclidean metric is being used.

The term Euclidean space is often used synonymously with the metric space Rn.

Theorem 1.8 (Cauchy-Schwarz Inequality) — For any points a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn) in Rn, the following inequality holds:(

n∑
k=1

akbk

)2

≤

(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)

4
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Proof. To prove the Cauchy–Schwarz Inequality, we introduce the function ψ(u) defined by

ψ(u) =

n∑
k=1

(aku+ bk)
2
.

It is evident that ψ(u) is a quadratic form in u, having the general form Au2 + 2Bu+ C.

Being a sum of squares, ψ(u) is non-negative for all u, i.e., ψ(u) ≥ 0. Hence, the discriminant
of this quadratic form, (2B)2 − 4AC, cannot be positive.

Dividing the discriminant by 4, we have

(2B)2

4
−AC = B2 −AC ≤ 0.

This can be rewritten as (
n∑

k=1

akbk

)2

−

(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)
≤ 0,

which proves the Cauchy–Schwarz Inequality.

We can use this inequality as a foundation for other inequalities and results in real analysis
and vector spaces.

Theorem 1.9 — For any points a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in Rn, we have
the following inequality:(

n∑
k=1

(ak + bk)
2

)
≤

(
n∑

k=1

a2k

)
+

(
n∑

k=1

b2k

)
.

Proof. Taking the square roots of both sides of the Cauchy–Schwarz inequality gives:√√√√( n∑
k=1

a2k

)(
n∑

k=1

b2k

)
≥

∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣ .

Example 1.10 (lp-metric on Rn). The Lp metric, also known as the Lp distance, is defined
for p ≥ 1 and provides a generalized notion of distance between points in Rn. For two points
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the L

p distance dp(x, y) is defined as:

dp(x, y) =

(
n∑

k=1

|xk − yk|p
)1/p

.

Proof. The verification (M3) is difficult requires the Holder inequality.

Example 1.11 (l∞−metric on Rn). The L∞ metric, also known as the Chebyshev distance or
infinity norm, is defined for points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn as:

d∞(x, y) = max
1≤k≤n

|xk − yk|.

5
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Definition 1.12 (l2 space) The ℓ2 space is a vector space consisting of all sequences x =
(x1, x2, x3, . . .) of real or complex numbers for which the ℓ2 norm is finite. The ℓ2 norm ∥x∥2
is defined as:

∥x∥2 =

( ∞∑
n=1

|xn|2
)1/2

<∞.

A sequence is in ℓ2 if it is ”square-summable,” meaning that the sum of the squares of its
elements is finite.
A natural metric on the ℓ2 space can be defined using the ℓ2 norm. Given two sequences
x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .) in ℓ2, the distance d(x, y) between x and y is
defined as:

d(x, y) = ∥x− y∥2 =

( ∞∑
n=1

|xn − yn|2
)1/2

.

This metric is well-defined because the sequences x and y are both in ℓ2, making their ℓ2
norms and the distance d(x, y) finite.

Definition 1.13 (lp space) The ℓp space is a generalization of the ℓ2 space and consists of
all sequences x = (x1, x2, x3, . . .) of real or complex numbers for which the ℓp norm is finite.
The ℓp norm ∥x∥p is defined as:

∥x∥p =

( ∞∑
n=1

|xn|p
)1/p

<∞,

where 1 ≤ p <∞. A metric dp on the ℓp space can be naturally defined using the ℓp norm.
For two sequences x and y in ℓp, the distance dp(x, y) is:

dp(x, y) =

( ∞∑
n=1

|xn − yn|p
)1/p

.

Example 1.14. For the space C[a, b], consisting of all continuous functions defined on the interval
[a, b], the uniform metric d is defined as follows. Given two functions f and g in C[a, b], the
distance d(f, g) between f and g is:

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|.

Here, sup denotes the supremum, or the least upper bound, of the set {|f(x)− g(x)| : x ∈ [a, b]}.

Example 1.15. The C1[a, b] space consists of all functions that are continuously differentiable
on the closed interval [a, b]. A common metric d used in C1[a, b] is the C1 metric, defined as
follows. Given two functions f and g in C1[a, b], the distance d(f, g) between f and g is:

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|+ sup
x∈[a,b]

|f ′(x)− g′(x)|.

This metric sums the uniform distance between the functions f and g and the uniform distance
between their first derivatives f ′ and g′.

6
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§2 September 11, 2023

§2.1 Examples of metric spaces

Another metric for the set Rn is the mapping d1, where

d1(x, y) =

n∑
k=1

|xk − yk|.

This also reduces to the metric of Example (1) when n = 1.

Both the Euclidean metric and the metric d1 just defined are special cases of the metric dp,
where

dp(x, y) =

(
n∑

k=1

|xk − yk|p
) 1

p

,

with p ≥ 1. The verification of (M3) for this mapping for general values of p requires a discussion
of the Hölder inequality and the Minkowski inequality.

(6) A third metric for the set Rn is given by the mapping d∞, where

d∞(x, y) = max
1≤k≤n

|xk − yk|.

When n = 1, we again obtain the metric of Example (1), while when n = 2 we obtain that of
Example (3). The method of Example (3) is used in showing that d∞ is a metric.

§2.2 Hölder and Minkowski inequalities

Example 2.1. Let X = Rn and dp(x, y) = (
∑n

k=1 |xk − yk|p)
1
p for p ≥ 1.

To prove (M3), we use:

Hölder inequality ∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
) 1

p

·

(
n∑

k=1

|bk|q
) 1

q

where 1
p + 1

q = 1 (extension of Cauchy-Schwarz inequation).

Goal: Prove inequality:(
n∑

k=1

|ak + bk|p
) 1

p

≤

(
n∑

k=1

|ak|p
) 1

p

+

(
n∑

k=1

|bk|p
) 1

p

(Minkowski)

Then (M3) follows taking ak = xk − yk and bk = yk − zk.

Exercise: Check this. (Hint: Look at case p = 2, last time)

Proof. Proof of (1):∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣
p

= |akbk| |ak + bk|p−1 ≤ (|ak|+ |bk|) |ak + bk|p−1

≤

(
n∑

k=1

|ak|p
) 1

p

·

(
n∑

k=1

|ak + bk|(p−1)q

) 1
q

by Hölder’s inequality with
1

p
+

1

q
= 1

Taking the sum of the previous two inequalities, we get:

n∑
k=1

|akbk|p ≤

(
n∑

k=1

|ak|p
) 1

p

+

(
n∑

k=1

|bk|p
) 1

p

7
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Also, we know that:
n∑

k=1

|ak + bk|p ≤
n∑

k=1

(|ak|+ |bk|)|ak + bk|p−1

Hence, combining the last two inequalities:

n∑
k=1

|ak + bk|p ≤

(
n∑

k=1

|ak + bk|p
) 1

p

·

(
n∑

k=1

(|ak|p + |bk|p)

) 1
p

≤

(
n∑

k=1

|ak|p
) 1

p

+

(
n∑

k=1

|bk|p
) 1

p

by Minkowski’s inequality

§2.3 ℓ2-spaces

Definition 2.2 Let ℓ2 be the set of sequences x = {xk}k≥1 with xk ∈ C for all k ≥ 1 such
that

∑∞
k=1 |xk|2 <∞. We define

d(x, y) =

√√√√ ∞∑
k=1

|xk − yk|2

where x = {xk}k≥1 and y = {yk}k≥1.

Lemma 2.3 — We justify that it makes sense to define
√∑∞

k=1 |xk − yk|2 as a metric by
proving:

a) d(x, y) <∞ for all x, y ∈ ℓ2.

b) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ ℓ2.

Proof. a) If |xk − yk| ≤ |xk| + |yk|, then |xk − yk|2 ≤ (|xk| + |yk|)2 for any k = 1, . . . , n, for
any n ≥ 1 fixed. We take the sum for all k = 1, . . . , n and then square root.√√√√ n∑

k=1

|xk − yk|2 ≤

√√√√ n∑
k=1

(|xk|+ |yk|)2

≤

√√√√ n∑
k=1

|xk|2 +

√√√√ n∑
k=1

|yk|2

for any n ≥ 1 by Minkowski’s inequality (p=2).

Hence
∑n

k=1 |xk − yk|2 ≤M2 <∞ for all n ≥ 1, and
∑∞

k=1 |xk − yk|2 ≤M2.

So d(x, y) =
√∑∞

k=1 |xk − yk|2 ≤M <∞.

b) |xk − zk| = |xk − yk + yk − zk|. Take the square |xk − zk|2 ≤ (|xk − yk|+ |yk − zk|)2. Take
the sum for k = 1, . . . , n, then the square root. We get:√√√√ n∑

k=1

|xk − zk|2 ≤

√√√√ n∑
k=1

(|xk − yk|+ |yk − zk|)2

8
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≤

√√√√ n∑
k=1

|xk − yk|2 +

√√√√ n∑
k=1

|yk − zk|2

for any n ≥ 1 by Minkowski’s inequality (p=2).

Then, taking n→ ∞ we get:

d(x, z) ≤ d(x, y) + d(y, z)

Remark 2.4. Let ℓp be the set of all sequences x = {xk}k≥1 with xk ∈ C such that
∑∞

k=1 |xk|p <
∞. If p ≥ 1, we define

d(x, y) =

( ∞∑
k=1

|xk − yk|p
) 1

p

where x = {xk}k≥1 and y = {yk}k≥1. Then d is a distance on ℓp (Exercise).

Remark 2.5. If p ∈ (0, 1), we define

d(x, y) =
∞∑
k=1

|xk − yk|p

This is also a distance. (M3) is verified using another inequality:

|a+ b|p ≤ |a|p + |b|p

for any a, b ∈ R (sub-additivity) if p ∈ (0, 1).
Replacement for Minkowski inequality is:

n∑
k=1

|ak + bk|p ≤
n∑

k=1

|ak|p +
n∑

k=1

|bk|p

Remark 2.6. Let ℓ∞ be the space of sequences x = {xk}k≥2, with xk ∈ C, such that {xk} is
bounded, i.e., ∃M > 0 such that |xk| ≤M for all k ≥ 1. We define

d(x, y) = sup
k≥1

|xk − yk|

Exercise: check that d is a distance on ℓ∞.

Example 2.7. Let X = C. Consider the distance function d(x, y) = |x−y|√
(1+|x|2)(1+|y|2)

, which is

called the chordal distance.

Proof. The proof that d is a distance is omitted.

Example 2.8. Let X = C[a, b] where C[a, b] = {f : [a, b] → R | f is continuous}. Recall
(MAT2125) that a function f : [a, b] → R is continuous at x0 ∈ [a, b] if for every ε > 0 there exists
δ > 0 such that for all x ∈ (x0 − δ, x0 + δ) we have |f(x) − f(x0)| < ε, i.e., |x − x0| < δ. f is
continuous on [a, b] if f is continuous at every x ∈ [a, b].
Observation: If f is continuous at x0 then limx→x0

f(x) = f(x0).
Let d(f, g) = maxt∈[a,b] |f(t)− g(t)|. Note: |x− y| is a continuous function on [a, b], and [a, b] is
compact, hence the maximum is attained, and d is well-defined. d is called the uniform metric.

9
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§3 September 14, 2023

§3.1 Examples of Metric Spaces - Continued

Example 3.1. Let X = C[a, b] and define d(f, g) = maxt∈[a,b] |f(t)− g(t)|.
Proof. We will prove that this is indeed a metric:

(M1) x = y ⇒ d(x, y) = 0.
Assume d(x, y) = 0. We want to show that x = y. Assume there exists t0 ∈ [a, b] such that
x(t0) ̸= y(t0). Then d(x, y) = maxt∈[a,b] |x(t) − y(t)| ≥ |x(t0) − y(t0)| > 0, which gives a
contradiction.

(M2) d(x, y) = d(y, x) (clear) since |x(t)− y(t)| = |y(t)− x(t)| for all t ∈ [a, b].

(M3) |x(t)− z(t)| ≤ |x(t)− y(t)|+ |y(t)− z(t)|. Then, taking the maximum, we obtain: d(x, z) ≤
d(x, y) + d(y, z).

Example 3.2. Let X = C[a, b] and define a metric on X by

d(x, y) =

∫ b

a

|x(t)− y(t)| dt.

Proof. We check that the metric axioms (M1)–(M3) hold.

1. (M1) If x = y then d(x, y) = 0. Assume that d(x, y) = 0. We show that x = y. Assume
that there exists t0 ∈ [a, b] such that x(t0) ̸= y(t0). Let f = |x− y|, clearly f is continuous.
Hence for every ε > 0, there exists δ > 0 such that

|f(t)− f(t0)| < ε

for all t such that |t− t0| < δ. This is equivalent to: f(t0)− ε < f(t) < f(t0) + ε. Taking

ε = f(t0)
2 , then

f(t) >
f(t0)

2

for t ∈ (t0 − δ, t0 + δ), and hence

d(x, y) ≥
∫ t0+δ

t0−δ

|x(t)− y(t)| dt ≥ 2δ
f(t0)

2
> 0,

which is a contradiction.

2. (M2) is clear.

3. (M3): |x(t)− z(t)| ≤ |x(t)− y(t)|+ |y(t)− z(t)| for all t ∈ [a, b]. Hence∫ b

a

|x(t)− z(t)| dt ≤
∫ b

a

|x(t)− y(t)| dt+
∫ b

a

|y(t)− z(t)| dt

This proves that d(x, z) ≤ d(x, y) + d(y, z).

Example 3.3. Let X = C[a, b] and define a metric on X by

d(x, y) =

(∫ b

a

(x(t)− y(t))2 dt

) 1
2

.

In verifying (M1), the same note as in Example (12) is relevant. For the triangle inequality, an
integral version of the Cauchy–Schwarz inequality must first be obtained. See Exercise 2.4(6).
We will denote this metric space by C2[a, b].

10
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Proof notes. The proof for dp being a metric is omitted; it uses:

• Hölder’s inequality:
∫ b

a
|f(t)g(t)| dt ≤

(∫ b

a
|f(t)|p dt

) 1
p
(∫ b

a
|g(t)|q dt

) 1
q

where 1
p + 1

q = 1.

• Minkowski’s inequality:
(∫ b

a
|f(t) + g(t)|p dt

) 1
p ≤

(∫ b

a
|f(t)|p dt

) 1
p

+
(∫ b

a
|g(t)|p dt

) 1
p

.

Example 3.4. Our final example shows that a metric may be defined for any nonempty set X,
without any specification as to the nature of its elements. We define d by

d(x, y) =

{
0, if x = y,

1, if x ̸= y,

where x, y ∈ X. It is a simple matter to check that (M1), (M2) and (M3) are satisfied. This
metric is called the discrete metric, or the trivial metric, for X, and serves a useful purpose as
a provider of counterexamples. What is not true in this metric space cannot be true in metric
spaces generally.

§3.2 Convergence in metric spaces

A sequence has been defined as a mapping from N into some set X. If a metric d has been defined
for X, we may speak of sequences in the metric space (X, d).

Definition 3.5 (Convergence) A sequence {xn} in a metric space (X, d) is said to converge
to an element x ∈ X if for any number ε > 0 there exists a positive integer N such that

d(xn, x) < ε whenever n > N.

Then x is called the limit of the sequence, and we write xn → x or limn→∞ xn = x (adding
‘n to ∞’ when needed for clarification) a.

aAn alternative way of putting this is to require that the real-valued sequence {dn}, where dn = d(xn, x),
converge with limit 0. Thus xn → x if and only if d(xn, x) → 0.

Two important points must be noticed about the definition. First, the element x to which the
sequence {xn} in X converges must itself be an element of X. Secondly, the metric by which the
convergence is defined must be the metric of the metric space (X, d): the fact that d(xn, x) → 0
does not imply that d′(xn, x) → 0, where d′ is a different metric for the same set X.

Observations

1. If X = R, then xn → x if for every ε > 0 there exists N ∈ N such that

|xn − x| < ε whenever n > N.

2. xn → x if and only if d(xn, x) → 0.

Remarks

1. The limit x has to be an element of X. For instance, xn = 1/n does not have a limit in
X = (0, 1).

2. If d and d′ are two metrics on X and d(xn, x) → 0, we cannot necessarily conclude that
d′(xn, x) → 0.

11
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Example 3.6. Consider the set X = [0, 1] with the standard metric d(x, y) = |x− y|. We define
another metric d′ on X by

d′(x, y) =

{
1 if x ̸= y,

0 if x = y.

Let {xn} = 1
n with x = 0. Then we have that d(xn, x) = |xn−x| = 1

n → 0 as n→ ∞. However,
d′(xn, x) = 1 ̸→ 0 as n→ ∞.
In particular, d′(xn, x) ̸→ 0 even as d(xn, x) → 0.

Proposition 3.7. If {xn} is a convergent sequence, then its limit is unique.

Proof. Suppose that d(xn, x) → 0 and d(xn, y) → 0. We show that x = y.
We have:

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y).

Since d(x, xn) → 0 and d(xn, y) → 0, it follows by the triangle inequality that d(x, y) = 0, hence
x = y by the property (M1) of a metric space.

Theorem 3.8 — We summarize a few results :

(a) Let xn = (xn1, . . . , xnm) ∈ Cm (or Rm) and x = (x1, . . . , xm) ∈ Cm (or Rm). Then
xn → x in Euclidean distance d(x, y) =

√∑m
k=1 |xk − yk|2 if and only if xnk → xk for

all k = 1, . . . ,m.

(b) Let xn = {xnk}k∈N be an element of ℓ2, i.e., xnk ∈ C for all k ∈ N and
∑∞

k=1 |xnk|2 <
∞. Let x = {xk}k∈N be an element of ℓ2. If xn → x in ℓ2, equipped with distance
d(x, y) =

√∑∞
k=1 |xk − yk|2, then xnk → xk for all k ∈ N. The converse is not true.

(c) Let {xn} be a sequence in C[a, b] and x ∈ C[a, b]. Then xn → x in C[a, b] equipped with
the distance d(x, y) = maxt∈[a,b] |x(t)− y(t)| if and only if {xn} converges uniformly to
x, i.e., for every ε > 0 there exists N ∈ N such that |xn(t)− x(t)| < ε for all t ∈ [a, b]
whenever n ≥ N .

Proof. We have to show that xn → x ⇐⇒ xnk → xk for all k = 1, . . . ,m.

“⇒′” 0 ≤ |xnk − xk| ≤
√∑m

j=1 |xnj − xj |2 = d(xn, x). Hence xnk → xk.

“⇐” Assume that xnk → xk for all k = 1, . . . ,m. Then |xnk − xk|2 → 0 for all k = 1, . . . ,m
and hence

∑m
k=1 |xnk − xk|2 → 0. We infer that d(xn, x) =

√∑m
k=1 |xnk − xk|2 → 0.

Hence xn → x in Rm or Cm.
Converse is not true, i.e., it is possible to construct a sequence {xn} in ℓ2 such that xnk → xk

for all k ∈ N, but xn ̸→ x in ℓ2 (does not converge to x).
Here is an example:

x1 = (1, 0, 0, . . .), x = (0, 0, 0, . . .).

Then xnk → xk = 0 for all k ∈ N. But d(xn, x) =
√∑∞

k=1 |xnk − xk|2 = 1 ̸→ 0.
Notice that |xn(t)− x(t)| < ε for all t ∈ [a, b] is equivalent to:
d(xn, x) = maxt∈[a,b] |xn(t)− x(t)| < ε.
Hence {xn} converges uniformly to x⇒ ∀ε > 0 ∃N ∈ N such that d(xn, x) < ε ∀n ≥ N , which

is equivalent to d(xn, x) → 0.

12
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§4 September 18, 2023

§4.1 Convergence in Metric Spaces - Continued

Definition 4.1 (Cauchy sequence) A sequence {xn} in a metric space (X, d) is a Cauchy
sequence if ∀ϵ > 0 ∃N ∈ N such that

d(xn, xm) < ϵ ∀n,m > N.

Remark 4.2. (Obs.: Th. 1.7.13) In X = R, {xn} converges ⇔ {xn} is a Cauchy sequence.

Theorem 4.3 — In any metric space, a convergent sequence is a Cauchy Sequence.

Proof. Let {xn} be a convergent sequence in a metric space (X, d). Let ϵ > 0 be arbitrary. Then
∃N ∈ N such that d(xn, x) <

ϵ
2 ∀n > N , where x = limn→∞ xn in X. Then ∀n,m > N ,

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ϵ

2
+
ϵ

2
= ϵ.

Remark 4.4. The converse is NOT true.

Definition 4.5 (Complete Metric Space) If every Cauchy sequence converges in a metric space,
then the space is said to be complete

Obs 1. R is complete.
Obs 2. Q is not complete. Here is an example of a Cauchy sequence in Q which does not converge
in Q:
Let xn be the decimal expansion of π truncated after the n-th decimal point, for example, x1 = 3.1,
x2 = 3.14, x3 = 3.141, etc. We have that |xn − xm| < 10−N for all n,m > N . The sequence {xn}
is Cauchy since ∀ϵ > 0 ∃N ∈ N such that 10−N < ϵ. However, {xn} is not convergent in Q.

Example 4.6. Let X = ℓ2 and consider sequences {xn} such that

x1 = (1, 0, 0, . . .), x2 = (0, 1, 0, . . .), x3 = (0, 0, 1, . . .), . . .

Then {xn} is not a Cauchy sequence. By Theorem 2.5.6, {xn} is not convergent.
For n ̸= m,

d(xn, xm) =

√√√√ ∞∑
k=1

|xnk − xmk|2 =
√
2.

§4.2 Examples on completeness

Example 4.7. R is complete.

Example 4.8. (2) Let (X, d) be the metric space C, consisting of the set of all complex numbers
with the natural metric d(x, y) = |x− y| (x, y ∈ C). We will show that C is a complete metric
space. Let {xn} be a Cauchy sequence in C. For each n ∈ N, write xn = un + ivn, where un and
vn are real numbers and i =

√
−1. Because {xn} is a Cauchy sequence, for any ε > 0 there is a

positive integer N such that |xn − xm| < ε when m,n > N . But

|un − um| = |Re(xn − xm)| ≤ |xn − xm|,
|vn − vm| ≤ |xn − xm|,

13
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so {un} and {vn} are Cauchy sequences in R. Since R is complete, these sequences are
convergent, and we can write limun = u and lim vn = v, say, for some real numbers u, v. Put
x = u+ iv. Then x ∈ C. Furthermore, x = limxn, because

0 ≤ d(xn, x) = |xn −x| = |(un + ivn)− (u+ iv)| = |(un −u)+ i(vn − v)| ≤ |un −u|+ |vn − v| < ε

for any ε > 0, provided n is large enough. Hence we have proved that the Cauchy sequence
{xn} is convergent, so C is a complete metric space.

This proof has been written out in full detail. A similar process is followed in Examples (3)
and (5) below. The general technique is to take a Cauchy sequence in the space, postulate a
natural limit for the sequence, show that it is an element of the space, and then verify that it is
indeed the limit.

Example 4.9. The metric space ℓ2 is complete. Let {xn} be a Cauchy sequence in ℓ2. We
must show that the sequence converges. For each n ∈ N, write xn = (xn1, xn2, . . . ). By definition
of the space ℓ2, the series

∑∞
k=1 |xnk|2 converges for each n. Since {xn} is a Cauchy sequence,

for any ε > 0 there is a positive integer N such that√√√√ ∞∑
k=1

|xnk − xmk|2 < ε

when m,n > N , using the definition of the metric for ℓ2. That is,

∞∑
k=1

|xnk − xmk|2 < ε2, m, n > N,

so we must have

|xnk − xmk| < ε, m, n > N,

for each k ∈ N. Then, for each k, {xnk} is a Cauchy sequence in C so limn→∞ xnk exists since
C is complete. Write limn→∞ xnk = xk and set x = (x1, x2, . . . ). We will show that x ∈ ℓ2 and
that {xn} converges to x. This will then mean that ℓ2 is complete. We note first that for any
r = 1, 2, . . . ,

r∑
k=1

|xnk − xmk|2 < ε2, m, n > N,

so that, keeping n fixed and using the fact that limm→∞ xmk = xk,

r∑
k=1

|xnk − xk|2 < ε2, n > N,

by Theorem 1.7.7. For points (a1, a2, . . . , ar), (b1, b2, . . . , br), (c1, c2, . . . , cr) ∈ Cr, the triangle
inequality in Cr gives us√√√√ r∑

k=1

|ak − ck|2 ≤

√√√√ r∑
k=1

|ak − bk|2 +

√√√√ r∑
k=1

|bk − ck|2.

Replacing ak by xk, bk by xnk and ck by 0, we have√√√√ r∑
k=1

|xk|2 ≤

√√√√ r∑
k=1

|xk − xnk|2 +

√√√√ r∑
k=1

|xnk|2 ≤ ε+

√√√√ ∞∑
k=1

|xnk|2 ≤ ε+
√
Mn,

if n > N . The convergence of the final series here thus implies the convergence of
∑∞

k=1 |xk|2,
so that indeed x ∈ ℓ2. Moreover, an inequality a few lines back shows further that

14
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√√√√ ∞∑
k=1

|xnk − xk|2 < ε, n > N,

and this implies that the sequence {xn} converges to x.

Example 4.10. metric spaces Rn and Cn are complete. This is easily shown by adapting the
method of Example (3).

The

Example 4.11. The metric space C[a, b] is complete. Let {xn} be a Cauchy sequence in C[a, b].
Then, for any ε > 0, we can find N so that, using the definition of the metric for this space,

max
a≤t≤b

|xn(t)− xm(t)| < ε

when m,n > N . Certainly then for each particular t in [a, b] we have

|xn(t)− xm(t)| < ε, m, n > N,

so {xn(t)} is a Cauchy sequence in R. But R is complete, so the sequence {xn(t)} converges
to a real number, which we will write as x(t), for each t in [a, b]. This determines a function x,
defined on [a, b]. In the preceding inequality, fix n (and let m→ ∞) to give

|xn(t)− x(t)| < ε, n > N.

The N here is independent of t in [a, b], so we have shown that the sequence {xn} converges
uniformly on [a, b] to x. Using the theorem that the uniform limit of a sequence of continuous
functions is itself continuous (Theorem 1.10.3), our limit function x must be continuous on [a, b].
That is, x ∈ C[a, b]. Furthermore, uniform convergence on [a, b] is equivalent to convergence in
C[a, b] (Theorem 2.4.3(c)). Thus the Cauchy sequence {xn} converges to x, completing the proof
that C[a, b] is complete.

15
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§5 September 21, 2023

Definition 5.1 (Subspace) Let (X, d) be a metric space and S ⊆ X. The restriction of d on
S is defined by:

dS : S × S → R given by dS(x, y) = d(x, y)

(S, dS) is called a subspace of X.

Obs: (S, dS) is a metric space.

Definition 5.2 (Sequentially closed ) S is called sequentially closed if for any sequence {xn}
in S for which x = limxn exists in X, we have: x ∈ S.

Obs: If X = R, S ⊆ R is sequentially closed if and only if S is closed.

• [a, b] is sequentially closed in R (i.e., Sc is open).

• {z ∈ C | |z| ≤ c} is sequentially closed in C.

Theorem 5.3 — Let (X, d) be a metric space and S ⊆ X. Then S is complete if and only
if S is sequentially closed.

Proof. ‘⇒” Assume that S is complete. We prove that S is sequentially closed. Let {xn} be a
sequence in S such that xn → x ∈ X.
By Theorem 2.5.6, {xn} is a Cauchy sequence. Since S is complete, there exists y ∈ S such that
xn → y. By the uniqueness of the limit, x = y. Since y ∈ S, we infer that x ∈ S. “⇐” Let {xn}
be a Cauchy sequence in S. Since X is complete, there exists x ∈ X such that limn→∞ xn = x.
Since S is sequentially closed, x ∈ S.

Definition 5.4 Next we define two notions for metric spaces:

(a) The diameter of a set S is:

δ(S) = sup{d(x, y) | x, y ∈ S}

(b) S is bounded if S = ∅ or δ(S) <∞.

§5.1 Sequential Continuity

• Let (X, d) and (Y, d′) be two metric spaces, and A : X → Y an arbitrary map. We will
denote Ax the value assigned by A to point x ∈ X, instead of A(x).

• Let (Z, d′′) be another metric space and β : Y → Z be another map. We write βA instead
of β ◦A for the composition map defined by: βA : X → Z, x 7→ β(Ax).

X
A−→ Y

β−→ Z

x 7→ Ax 7→ βAx

• If A : X → X is a function from X to X, then A2 = A ◦A : X → X is the function given
by A2x = A(Ax). In general, by recurrence, we define An : X → X given by:

Anx = A(An−1x) for all x ∈ X

• The identity map is defined by I : X → X, Ix = x.

16
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• Associativity: If A : X → Y , B : Y → Z, C : Z →W , then

C(βA) = (CB)A

Example 5.5. Let X = Rn and Y = Rm for n,m ∈ N. Let A = (aij) where 1 ≤ i ≤ m and
1 ≤ j ≤ n. Then A : Rn → Rm is a map between the two metric spaces X and Y .

Definition 5.6 Let (X, d) and (Y, d′) be two metric spaces. A function A : X → Y is sequen-
tially continuous at point x ∈ X if for any sequence {xn} in X for which limn→∞ xn = x,
{Axn} is also a convergent sequence in Y and limn→∞Axn = Ax. We say that A is sequen-
tially continuous on X if it is sequentially continuous at every x ∈ X. Usually, we drop the
word “sequentially”.

Example 5.7. Let C[a, b] be the set of all continuous functions on [a, b], endowed with the
uniform distance:

d(f, g) = max
t∈[a,b]

|f(t)− g(t)|

Let A : C[a, b] → R defined by

Af =

∫ b

a

f(t) dt, ∀f ∈ C[a, b].

We show that A is continuous (in the sense of Definition 3.1.1).

Let {fn} be a sequence in C[a, b] such that fn → f in the uniform distance, for some f ∈ C[a, b].
We have to show that:

lim
n→∞

Afn = Af (in R)

Let ε > 0 be arbitrary. Since d(fn, f) → 0, there exists N ∈ N such that d(fn, f) < ε for all
n > N . This means that

|Afn −Af | < ε for all n > N.

Then ∀n > N ,

|Afn −Af | =

∣∣∣∣∣
∫ b

a

fn(t) dt−
∫ b

a

f(t) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(fn(t)− f(t)) dt

∣∣∣∣∣
≤
∫ b

a

|fn(t)− f(t)| dt (1)

<

∫ b

a

ε dt = ε(b− a) (2)

Using the following inequality:∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)| dt (3)

We also used the following inequality:

if f(t) ≤ g(t)∀t ∈ [a, b] then

∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt (4)

This proves that Afn → Af in R.

17
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§5.2 Contraction mapping and fixed point

A basic question in mathematics is to solve equation A(x) = y. We will learn how to solve this
equation in the format A(x) = x.

Definition 5.8 (Fixed point, contraction) Let (X, d) be a metric space and a map A : X → X.

(a) A point x ∈ X is called a fixed point of A if A(x) = x.

(b) The map A is a contraction, if there exists α ∈ (0, 1) such that

d(A(x), A(y)) ≤ αd(x, y) ∀x, y ∈ X

α is called the contraction constant of A.

Remark: Solving the equation A(x) = x is equivalent to finding the fixed points of A.

Theorem 5.9 — If A : X → X is a contraction on a metric space (X, d), then A is
continuous.

Proof. We have to prove that A is (sequentially) continuous at every point x ∈ X. Let x ∈ X be
arbitrary, and let {xn} be a sequence in X such that xn → x. By the contraction property (3)

0 ≤ d(A(xn), A(x)) ≤ αd(xn, x)

By the Squeeze Criterion, d(A(xn), A(x)) → 0.

Remark 1: Theorem 3.2.2 continues to hold if (3) holds for some α (not necessarily
α ∈ (0, 1)).
Remark 2: The converse of Theorem 3.2.2 is not necessarily true; if A : X → X is
continuous, A does not have to be a contraction (example: A = I).

18
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§6.1 Fixed Point Theorem

Theorem 6.1 (Fixed Point Theorem) — Every contraction mapping on a complete metric
space has a unique fixed point.

Proof. Let A be a contraction mapping with contraction constant α, on a complete metric space
(X, d). Take any point x0 ∈ X and define the sequence {xn} in X recursively by

xn = A(xn−1), for n ∈ N.

Hence, we have

x1 = A(x0), x2 = A2(x0), x3 = A3(x0), . . . , xn = An(x0).

We aim to prove that {xn} is a Cauchy sequence. Observe that for any integer k > 1,

d(xk, xk−1) = d(Ak(x0), A
k−1(x0)) ≤ αd(Ak−1(x0), A

k−2(x0)) ≤ . . . ≤ αk−1d(A(x0), x0).

For 1 ≤ m < n, we find that

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + . . .+ d(xm+1, xm)

≤ αn−1d(x1, x0) + αn−2d(x1, x0) + . . .+ αmd(x1, x0)

= αm(1 + α+ α2 + . . .+ αn−m−1)d(x1, x0)

<
αm

1− α
d(x1, x0),

by the geometric series sum, since 0 < α < 1. As m approaches infinity, αm approaches zero,
which implies d(xn, xm) can be made arbitrarily small for sufficiently large m and n. Therefore,
{xn} is a Cauchy sequence. Because X is complete, there exists x = limxn.
To show x is a fixed point of A, observe that for any n,

0 ≤ d(A(x), x) ≤ d(A(x), A(xn−1)) + d(A(xn−1), x) ≤ αd(x, xn−1) + d(xn, x),

which implies d(A(x), x) = 0 as n goes to infinity because d(xn, x) tends to zero. Hence, A(x) = x,
and x is a fixed point of A.
To prove uniqueness, suppose y is another fixed point such that A(y) = y. Then

d(x, y) = d(A(x), A(y)) ≤ αd(x, y),

and since α < 1, this inequality holds only if d(x, y) = 0, i.e., x = y. Therefore, A has a unique
fixed point.

Theorem 6.2 — Let A be a mapping on a complete metric space, and suppose that An is
a contraction for some integer n ∈ N. Then A has a unique fixed point.

Proof. Let the metric space be X. According to the Fixed Point Theorem, the mapping An has
a unique fixed point x ∈ X such that An(x) = x. Observing that

An(A(x)) = An+1(x) = A(An(x)) = A(x),

we conclude that A(x) is also a fixed point of An. Since An can have only one fixed point, it
must be that A(x) = x, and thus x is also a fixed point of A.
Now, any fixed point y of A is also a fixed point of An since

An(y) = An−1(A(y)) = An−1(y) = · · · = A(y) = y.
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It follows that x is the only fixed point of A, as any other fixed point y would also be a fixed
point of An, contradicting the uniqueness of x.

§6.2 Applications of Fixed Point Theorem

Example 6.3. Let f be a function with domain [a, b] and range a subset of [a, b]. Suppose there
is some positive constant K < 1 such that

|f(x1)− f(x2)| ≤ K|x1 − x2|,

for any points x1, x2 ∈ [a, b]. (Then f is said to satisfy a Lipschitz condition, with Lipschitz
constant K.) The Fixed Point Theorem assures us that the equation f(x) = x has a unique
solution for x in [a, b].
This is because f may be considered as a mapping from the metric space consisting of the

closed interval [a, b] with the natural metric into itself, and this metric space is complete because
it is a closed subspace of R (Theorem 2.7.3). Second, the Lipschitz condition, with 0 < K < 1,
states that this mapping f is a contraction. Hence f has a unique fixed point.

If f is a differentiable function on [a, b], with range a subset of [a, b], and if there is a constant
K such that

|f ′(x)| ≤ K < 1,

for all x in [a, b], then again the equation f(x) = x has a unique solution for x in [a, b]. This
follows from the mean value theorem of differential calculus: for any x1, x2 ∈ [a, b], with x1 < x2,
there is at least one point c, x1 < c < x2, such that

|f(x1)− f(x2)| = |f ′(c)(x1 − x2)| = |f ′(c)||x1 − x2| ≤ K|x1 − x2|,

and so f satisfies the Lipschitz condition with constant K < 1.

As an example, consider the function f(x) = x5−x
2 + 1

2 , for 0 ≤ x ≤ 1. The given equation is
equivalent to the equation f(x) = x, so we seek information about the fixed points of f . The
domain and range of f is [0, 1], and we have

|f ′(x)| = |5x4 − x| ≤ 5x4 + x ≤ 5

16
+

1

2
< 1

for all x in [0, 1]. All the required conditions are met, so f has a single fixed point, which is the
required root of the original equation.
To find the root, we can iteratively apply f starting from x0 = 0. The first three iterates are

x1 = f(0) = 0.25, x2 = f(0.25) ≈ 0.2197, x3 = f(0.2197) ≈ 0.2264, and the subsequent iterates
converge to the root, which to three decimal places, is 0.225.
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§7.1 Advanced Applications of Fixed Point Theorem

Example 7.1. Consider the system of n linear equations in n unknowns x1, x2, . . . , xn, where
ajk and bj are real numbers for each j and k. Introducing the n× n matrix A = (ajk) and the
column vectors x = (x1, x2, . . . , xn)

T , b = (b1, b2, . . . , bn)
T , the system can be written in matrix

form as Ax = b, and must be solved for x. Letting C = (cjk) be the matrix I −A, where I is the
n× n identity matrix, the equation may be written (I − C)x = b, or

Cx+ b = x.

Considering the elements of Rn to be column vectors, we define a mapping M : Rn → Rn by

Mx = Cx+ b,

so that our matrix equation is replaced by the equation

Mx = x.

Hence the solutions of the original system are related to the fixed points of the mapping M .
Since Rn is a complete metric space, there will be just one solution if M is a contraction mapping.

Let y = (y1, y2, . . . , yn)
T and z = (z1, z2, . . . , zn)

T be two points of Rn and let d denote the
Euclidean metric:

d(y, z) =

√√√√ n∑
j=1

(yj − zj)2.

Since My is the vector Cy + b, with j-th component
∑n

k=1 cjkyk + bj (for j = 1, 2, . . . , n), and
similarly for Mz, we have

d(My,Mz) =

√√√√ n∑
j=1

(
n∑

k=1

cjkyk + bj −
n∑

k=1

cjkzk + bj

)2

=

√√√√ n∑
j=1

(
n∑

k=1

cjk(yk − zk)

)2

≤

√√√√ n∑
j=1

(
n∑

k=1

c2jk

)(
n∑

k=1

(yk − zk)2

)
,

where the last inequality follows from the Cauchy-Schwarz inequality. Continuing from the
Cauchy-Schwarz inequality, Theorem 2.2.1, we have

d(My,Mz) ≤

√√√√ n∑
j=1

(
n∑

k=1

c2jk

)
d(y, z),

so certainly M will be a contraction if

0 <

n∑
j=1

n∑
k=1

c2jk < 1.

In terms of the original matrix A, this condition requires that ajk be near 0 when j ≠ k and
near 1 when j = k.

Different sufficient conditions for M to be a contraction can be obtained by choosing different
metrics on the set Rn, as long as the resulting metric space is complete. We are totally free to
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take whichever metric best serves our purpose. For instance, with the metric d∞, where

d∞(y, z) = max
1≤k≤n

|yk − zk|,

we know that (Rn, d∞) is complete (Exercise 2.9(7)), and

d∞(My,Mz) = max
1≤j≤n

∣∣∣∣∣
n∑

k=1

cjkyk + bj −
n∑

k=1

cjkzk + bj

∣∣∣∣∣
= max

1≤j≤n

∣∣∣∣∣
n∑

k=1

cjk(yk − zk)

∣∣∣∣∣
≤ max

1≤j≤n

n∑
k=1

|cjk||yk − zk|

≤ max
1≤j≤n

n∑
k=1

|cjk| · max
1≤k≤n

|yk − zk|

= max
1≤j≤n

n∑
k=1

|cjk| · d∞(y, z),

so that M will be a contraction under this metric if

0 < max
1≤j≤n

n∑
k=1

|cjk| < 1,

that is, if the sums of the absolute values of the elements in the rows of C are all less than 1 (and
C has at least one nonzero element).

A third condition is obtained in Exercise 3.5(3). It only takes one of these conditions for M to
be a contraction. The conditions to be satisfied to ensure the existence of the unique fixed point.

Once M is known to be a contraction, its fixed point can be found, at least approximately, by
iteration. If x0 is any column vector, then we have successively

x1 =Mx0 = Cx0 + b,

x2 =Mx1 = Cx1 + b = C(Cx0 + b) + b = C2x0 + Cb+ b,

x3 =Mx2 = Cx2 + b = C3x0 + C2b+ Cb+ b,

and so on, the sequence {xn} converging to the unique solution x of Ax = b, where A = I − C.
There are of course other tests for whether a system of linear equations has solutions, and other
methods of finding them. However, the above is very simple. The tests essentially require only the
operation of addition on the elements of C or their squares, and, if either condition is satisfied, the
solution may be obtained to any desired degree of accuracy (subject to computational precision)
in terms of powers of C. There is no need to determine the rank, determinant or inverse of any
matrix. It must be realised, though, that we have only obtained sufficient conditions: if none of
the conditions is met, solutions may still exist.

As a simple example, consider the system of equations

16x− 3y + 4z = 7,

6x+ 7y − 4z = 4,

y + 4z = 15.
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Dividing the equations respectively by 16, 8 and 4 gives the equivalent system

x− 3

16
y +

1

4
z =

7

16
,

3

4
x+

7

8
y − 1

2
z =

1

2
,

1

4
y + z =

15

4
.

In the notation above, we have

A =

1 − 3
16

1
4

3
4

7
8 − 1

2
0 1

4 1

 , C = I −A =

 0 3
16 − 1

4
− 3

4
1
8

1
2

0 − 1
4 0

 ,

and we find that the sum of the squares of the elements of C is 253
256 , less than 1, so our system

possesses a unique solution which may be found sufficiently.

Example 7.2. Our third application of the fixed point theorem is to prove an important theorem
on the existence of a solution to the first-order differential equation

dy

dx
= f(x, y) (1)

with initial condition y = y0 when x = x0. The result is a form of Picard’s theorem.

Two conditions are imposed on f : first, f is continuous in some rectangle {(x, y) : |x− x0| ≤
a, |y − y0| ≤ b}; second, f satisfies a Lipschitz condition on y, uniformly in x, in the rectangle.
The latter means that there is a positive constant K such that

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2| (2)

for any x in [x0 − a, x0 + a] and any y1, y2 in [y0 − b, y0 + b]. Since f is continuous in the
rectangle, it must be bounded there (see Section 1.9), so there is a positive constant M such that
|f(x, y)| ≤M .

Under these conditions, we will prove that there is a positive number h such that in [x0−h, x0+h]
there is a unique solution to the differential equation.

Write the differential equation equivalently in integral form as

y(x) = y0 +

∫ x

x0

f(t, y) dt, (3)

incorporating the initial condition. Let h be a number satisfying

h > 0, h <
1

K ′ , h ≤ a, h ≤ b

M
. (4)

Denote by J the closed interval [x0 − h, x0 + h] and write C[J ] for C[x0 − h, x0 + h]. Let F be
the subset of C[J ] consisting of continuous functions defined on J for which

|y(x)− y0| ≤ b, x ∈ J, y ∈ C[J ]. (5)

Referring to Figure 9, F is the set of all continuous functions with graphs in the shaded
rectangle. Impose the uniform metric on F , so that F becomes a subspace of the complete metric
space C[J ].

We will show that F is a closed subspace, so that, by Theorem 2.7.3, F is a complete metric
space. Let {yn} be a sequence of functions in F which, as a sequence in C[J ], converges. Write
y = lim yn (so y ∈ C[J ]). By definition of the uniform metric, given ε > 0 we can find a positive
integer N such that

max
x∈J

|yn(x)− y(x)| < ε, n > N. (6)
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Also, for each x ∈ J and each n ∈ N,

|yn(x)− y0| ≤ b. (7)

Hence, for each x ∈ J , and n > N ,

|y(x)− y0| ≤ |y(x)− yn(x)|+ |yn(x)− y0| < ε+ b. (8)

But ε is arbitrary, so we must have
|y(x)− y0| ≤ b (9)

for all x ∈ J . This shows that y ∈ F , so F is a closed subspace of C[J ].

Now define a mapping A on F by the equation Ay = z, where y ∈ F and

z(x) = y0 +

∫ x

x0

f(t, y(t)) dt, x ∈ J. (10)

We will show that z ∈ F and that A is a contraction mapping. Then the fixed point theorem will
imply that A has a unique fixed point. That is, we will have shown the existence of a unique
function y ∈ F such that Ay = y, which means

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt, x ∈ J. (11)

This will complete the proof of the existence on J of a unique solution of our differential
equation.

To show that z ∈ F , we see that, for x ∈ J ,

|z(x)− y0| =
∣∣∣∣∫ x

x0

f(t, y) dt

∣∣∣∣ ≤ ∫ x

x0

|f(t, y)| dt ≤M |x− x0| ≤Mh ≤ b.

Thus z ∈ F (so A maps F into itself). To show that A is a contraction, take y, ỹ ∈ F . Set z = Ay,
z̃ = Aỹ. Let d denote the uniform metric. Then, for x ∈ J ,

|z(x)− z̃(x)| =
∣∣∣∣∫ x

x0

(f(t, y)− f(t, ỹ)) dt

∣∣∣∣ ≤ ∫ x

x0

|f(t, y)− f(t, ỹ)| dt ≤ K

∫ x

x0

|y(t)− ỹ(t)| dt

≤ K ·max
x∈J

|y(x)− ỹ(x)| · |x− x0| ≤ Khmax
x∈J

|y(x)− ỹ(x)|,

where maxx∈J |y(x)− ỹ(x)| = d(y, ỹ). Thus,

d(Ay,Aỹ) ≤ αd(y, ỹ),

where α = Kh. But 0 < α < 1 and so A is a contraction.

It is easy to check that this result may be applied successfully to, for example, the linear
first-order differential equation

dy

dx
+ P (x)y = Q(x), y(x0) = y0,

to ensure a unique solution in some interval about x0, provided the functions P and Q are
continuous.

An example of a differential equation where it cannot be applied is the equation

dy

dx
= 2|y|1/2, y(0) = 0.

It is impossible to satisfy the Lipschitz condition for small values of |y|: the inequality ||y1|1/2 −
|y2|1/2| ≤ K|y1 − y2| cannot hold for any constant K if we take y2 = 0 and |y1| < 1/K2. In fact,
this equation has at least two solutions for x in any interval containing 0. These are the functions
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defined by the equations

y =

{
x2, x ≥ 0,

−x2, x < 0.

Example 7.3. The differential equation in (3) was considered by first transforming it into an
integral equation. We intend now to study two standard types of integral equations, in each case
obtaining conditions which ensure a unique solution.

(a) Any equation of the form

x(s) = λ

∫ b

a

k(s, t)x(t) dt+ f(s), a ≤ s ≤ b,

involving two given functions k (of two variables) and f , an unknown function x, and a nonzero
constant λ, is called a Fredholm integral equation (of the second kind).

Suppose f is continuous on the interval [a, b], and k is continuous on the square [a, b]× [a, b].
Then k is bounded: there exists a positive constant M so that, in the square, |k(s, t)| ≤M .

Take any continuous function x on [a, b] and define a mapping A on C[a, b] by y = Ax, where

v(s) = λ

∫ b

a

k(s, t)x(t) dt+ f(s)

We will obtain a condition for A to be a contraction. Note in the first place that, since k, x and f
are continuous, so is y, and so indeed A maps the complete metric space C[a, b] into itself. Now,
if d denotes the uniform metric of C[a, b], and if y1 = Ax1, y2 = Ax2 (x1, x2 ∈ C[a, b]), then

d(y1, y2) = max
a≤s≤b

|y1(s)− y2(s)|

= max
a≤s≤b

∣∣∣∣∣λ
∫ b

a

k(s, t)(x1(t)− x2(t)) dt

∣∣∣∣∣
≤ |λ| · max

a≤s≤b

∫ b

a

|k(s, t)||x1(t)− x2(t)| dt

≤ |λ|M(b− a) · max
a≤s≤b

|x1(s)− x2(s)|

= |λ|M(b− a)d(x1, x2),

and hence A is a contraction mapping provided

|λ| < 1

M(b− a)
.

Thus, provided the constant λ satisfies this inequality, we are assured that the original Fredholm
integral equation has a unique solution. This solution may be found by iteration, taking any
function in C[a, b] as starting point.

As an example, consider the equation

x(s) =
1

2

∫ 1

0

stx(t) dt+
5s

6
.

In the above notation, λ = 1
2 , a = 0, b = 1, k(s, t) = st, f(s) = 5s

6 . For s, t ∈ [0, 1], we have
|k(s, t)| = st ≤ 1, so take M = 1. The inequality for λ is satisfied, so a unique solution is assured.
To find it, let us take as starting point the function x0 where x0(s) = 1, 0 ≤ s ≤ 1. Then we
obtain

x1(s) =
1

2

∫ 1

0

st dt+
5s

6
=

13s

12
,

x2(s) =
1

2

∫ 1

0

13st

12
dt+

5s

6
=

73s

72
,
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x3(s) =
1

2

∫ 1

0

73st

72
dt+

5s

6
=

433s

432
,

and we are led to suggest

xn(s) =
2 · 6n + 1

2 · 6n
s, n ∈ N.

This should be verified by mathematical induction. The solution of the integral equation is limxn:
the function x, where x(s) = 0 ≤ s ≤ 1.
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Recall: If {xn} is a sequence in a metric space (X, d) and n1 < n2 < n3 < · · · are integers, then
{xnk

} is a subsequence of {xn}.
If limn→∞ xn = x then limnk→∞ xnk

= x for any subsequence {xnk
}. The converse is not true.

If {xnk
} d.n.c. limitxnk

= x, then limn→∞ xn may not be x. Example: {xn}n∈N is given by:
2, 12 , 3,

1
3 , 4,

1
4 , . . .

However, we can saw the following:

Theorem 8.1 — In any metric space, a Cauchy sequence having a convergent subsequence
is itself convergent, with the same limit. a

aIf {xn} is a Cauchy sequence and {xn} has a convergent subsequence {xnk} to a limit x, then limn→∞ xn =
x.

Proof. Let {xn} be a Cauchy sequence in metric space (X, d), and let {xnk
} be a convergent

subsequence of {xn}. Set x = limk→∞ xnk
be the limit of the convergent subsequence. Now for

any ε > 0, there exists a K ∈ N such that d(xnk
, x) < 1

2ε when k > K. As {xn} is a Cauchy
sequence, there exists N ∈ N such that for all n,m > N , d(xn, xm) < 1

2ε when n,m > N . We
may assume that K > N . Which implies that nk ≥ k > K > N and we have

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) =
1

2
ε+

1

2
ε = ε

Before we introduced completeness because of the need to categorize those metric spaces which
have the propriety of Cauchy convergence for real numbers. In a similar way we now discuss
an other property: compactness. The Bolzano–Weierstrass theorem says that there exists a
convergent subsequence of any (real-valued) sequence, as long as it is bounded. This notions
leads us to our definition of compactness.

Definition 8.2 A subset of a metric space is a called sequentially compact if every sequence
in the subset has a convergent subsequence.

Theorem 8.3 — If a metric space is compact, then it is complete.

Proof. This follows directly from the previous theorem. A complete metric space is one in which
every Cauchy sequence is convergent. From the previous theorem we know if Cauchy sequence
has a convergent subsequence, it is convergent. And in the definition of compactness is every
sequence in the subset has a convergent subsequence. Therefore, every Cauchy sequence would
be convergent in this space.

Remark: The converse of Theorem 4.1.5 is not true.
Ex: X = R is sequentially closed, but X is not sequentially compact.

Definition 8.4 Recall: S ⊆ X is bounded if

δ(S) = sup{d(x, y);x, y ∈ S} <∞ or S = ∅.

This is equivalent to saying that ∃M > 0 s.t. S ⊆ BM (x0) where BM (x0) = {x ∈
X; d(x, x0) < M} is the ball of radius M and center x0.

Theorem 8.5 — Let (X, d) be a metric space and S ⊆ X. If S is sequentially compact
then S is sequentially closed.
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Proof. Let {xn} be a sequence in S such that x = limn→∞ xn exists in X. We have to prove
that x ∈ S. Since S is sequentially compact, there exists a subsequence {xnk

} such that
y = limk→∞ xnk

∈ S. But limn→∞ xn = x. By uniqueness of the limit x = y. Hence x ∈ S.

Remark: The converse is not true.
Ex: X = R is sequentially closed, but X is not sequentially compact.

Recall (Definition 2.8.1), S ⊆ X is bounded if

δ(S) = sup{d(x, y) | x, y ∈ S} <∞

or S = ∅.
This is equivalent to saying that there exists M > 0 such that S ⊆ BM (x0) for some x0 ∈ X,

where BM (x0) = {x ∈ X | d(x, x0) < M} is the ball of radius M and center x0.

Theorem 8.6 — Every compact set in a metric space is bounded.

Proof. Suppose that S ̸= ∅. Assume by contradiction that S is not bounded. The idea is to
construct a sequence {xk} in S which does not have a convergent subsequence. Let x ∈ S be
arbitrary. Note that it is impossible to have d(xn, x) < 1 ∀xn ∈ S, since otherwise δ(S) = 2
(by triangular inequality d(x, y) ≤ d(x, xn) + d(xn, y) < 1 + 1 for all x, y ∈ S). Hence, ∃x2 ∈ S
s.t. d(x2, x) ≥ 1. Denote d1 = 1, and d2 = d1 + d(x2, x) = 1 + d(x2, x). It is impossible to have
d(x3, x) < d2 ∀x3 ∈ S since otherwise δ(S) ≤ d2, hence, ∃x3 ∈ S s.t. d(x3, x) ≥ d2. Denote
d3 = d1 + d(x3, x) = 1 + d(x3, x). We continue in this manner. We construct the sequence {xk}
in S and the sequence {dn} in R such that

d(xn, x) > dn−1 and dn = d1 + d(xn, x) ≥ dn−1

for all n ≥ 2, we have:

dn − dn−1

dn − 1
≤ d(xn, x) ≤ d(xn+1, x) + d(xn, xn+1) = d(xn+1, x) + (dn − 1)

(by triangular inequality) Therefore, ∀n ≥ 2, d(xn, xn+1) ≥ 1 Hence, {xk} is not a Cauchy
sequence. Therefore, {xk} cannot have a convergent subsequence (since it cannot have any
Cauchy subsequence) This contradicts our assumption that S is sequentially compact.

Discussion about the case X = R. Recall: Theorem 1.7.11 (Bolzano-Weierstrass Theorem for
sequences) In R, any bounded sequence has a convergent subsequence.

Lemma 8.7 — A set S ⊆ R is sequentially compact if and only if it is sequentially closed
and boundeda.

aDiscussion about the case X = R

Proof. By Th. 4.1.4 and 4.1.5, we only have to prove the ”if” part. Let S ⊆ R be sequentially
closed and bounded. Let {xn} be a sequence in S. Since S is bounded, {xn} is also bounded. By
Theorem 1.7.11, {xn} has a convergent subsequence {xnk

} to a limit x. Because S is sequentially
closed, x ∈ S. This proves that S is sequentially compact.

Theorem 8.8 — A subset of Rn is compact if and only if it is closed and bounded.

Proof. Omitted. Not required for class.
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§9.1 Compactness Theorems

• A set S ⊂ X is sequentially compact if for all sequences {xn} ⊂ S there exists sub sequence
{xnk

}k such that xnk
→ x ∈ S as k → ∞

• If x is a sequentially compact then it is complete

• If S ⊂ X is sequentially compact then S is sequentially closed.

• If S ⊂ X is sequentially compact the S is bounded

⋆ Remark: A set S ⊆ X is bounded if and only if ∃x0 ∈ X ∃r > 0 such that

S ⊆ Br(x0) := {x ∈ X; d(x, x0) < r}

• Suppose that S is bounded, i.e.

δ(S) = sup{d(x, y)|x, y ∈ S} < ∞

(Assume that S ̸= ∅) Take x0 ∈ S arbitrarily. Then: ∀x ∈ S

d(x, x0) < δ(S) + 1 = n. This means that S ⊆ Bn(x0)

• Suppose that S ⊆ Bn(x0) for some x0 ∈ X and n > 0 Assume that S ̸= ∅. For any x, y ∈ S, by
triangular inequality

d(x, y) ≤ d(x, x0) + d(x0, y) < 2n. This proves that δ(S) ≤ 2n < ∞.

§9.2 Arzelà–Ascoli Theorem

Next we turn to the compact sets of C[a, b]. The motivation for the Arzelà–Ascoli theorem is
that it gives us the necessary and sufficient conditions to decide weather every sequence of a
family real-valued continuous functions defined on a closed and bounded interval has uniformly
convergent subsequences.

Definition 9.1 Let F be a family (or set) of functions, each with domain D.

• We say that F is uniformly bounded on D if there is a positive number M such that
|f(x)| ≤M for all f ∈ F and x ∈ D.

• We say that F is equicontinuous on D if, given any number ε > 0, there exists a
number δ, for any f ∈ F

|f(x′)− f(x′′)| < ε, whenever x′, x′′ ∈ D and |x′ − x′′| < δ

Remark:

1. Note that (1) is equivalent to:

sup
x∈D

|f(x)| ≤M ∀f ∈ F

This means that
d(f, 0) = max

x∈[a,b]
|f(x)− 0(x)| ≤M ∀f ∈ F

which is the same thing as saying that

F ⊆ BM+1(0)

This means that F is uniformly bounded if and only if F is bounded
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2. If F is equicontinuous then f is uniformly continuous ∀f ∈ F .

Example 9.2. Let fn : [0, 1] → R, fn(x) = xn for all n ≥ 1 integer. Let F = {fn;n ≥ 1}. We
claim that F is NOT equicontinuous.

Proof. To see this, let ε ∈ (0, 1) be arbitrary. We have to find δ > 0 such that for all x ∈ [0, 1]
with |1− x| < δ, we have

|1n − xn| = |1− xn| < ε ∀n ≥ 1 (Take x = 1
n in (2))

This would mean that xn > 1− ε ∀n ≥ 1, i.e., x > (1− ε)
1
n ∀n ≥ 1.

Hence if x > 1− δ then x > (1− ε)
1
n ∀n ≥ 1.

This would be possible if and only if

1− δ > (1− ε)
1
n ∀n ≥ 1,

which means that 1 − δ is larger than the limit of (1 − ε)
1
n as n approaches infinity, which

contradicts the fact that δ > 0.

Theorem 9.3 (Arzelà–Ascoli theorem) — A subset F of metric space C[a, b] is compact if F
is closed, uniformly bounded, and equicontinuous.

Proof. Omitted. Reading Material.

A simple sufficinent condition for a family of functions to be equicontinuous is that all functions
of the family satisfy Liptschitz condition with the same Liptschitz constant. A family F ⊂ C[a, b]
is equicontinious if ∃K > 0 such that

|f(x)− f(x′)| ≤ K|x′ − x|, ∀x, x′ ∈ [a, b], ∀f ∈ F

§9.3 Application to approximation theory

Theorem 9.4 — Let A : X → Y be a continuous mapping between metric spaces X and Y ,
and let S be a non-empty compact subset of X. Then the image A(S) is compact subset of
Y . a

aThis theorem basically says that image under continuous mapping of a compact set is again a compact set

Proof. Let {yn} be a sequence in A(S). For each n ∈ N, there is at least one point w ∈ S such
that Aw = yn. Choose one and call it xn. Then xn is a sequence in S and Axn = yn. Since S is
compact, {xn} has a convergent subsequence {xnk

}, with limit x. Then x ∈ S, so Ax ∈ A(S).
Now, Ank

= ynk
and Axnk

→ Ax since A is continuous, so {ynk
} is a convergent subsequence of

{yn}. Hence, A(S) is compact.

Theorem 9.5 — If f is a real-valued continuous function mapping on metric space X and
S is any nonempty compact set in X, then there exist points xM and xm in S such that

f(xM ) = max
s∈S

f(x) and f(xm) = min
s∈S

f(x)

Proof. By previous theorem, f(S) ⊆ R is a compact set (in R). And f(S) is sequentially closed
(in R) and bounded. From MAT-2125 we prove that sup f(S) ∈ f(S) and inf f(S) ⊆ f(S) Hence
∃xmax ∈ S s.t. sup f(S) = f(xmax) and ∃xmin ∈ S s.t. inf f(S) = f(xmin).
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§10.1 Application to approximation theory continued

Theorem 10.1 — Given a nonempty compact subset S of a metric space (X, d) and a point
x ∈ X, there exists a point p ∈ S such that d(p, x) is a minimum.a

aThe point p is called a best approximation in S of the point x in X

Proof. Let us define f : X → R by f(y) = d(y, x), for any y ∈ X. We show that f is continuous.
Let {yn} ⊆ X such that yn → y ∈ X. Then

0 ≤ |f(yn)− f(y)| = |d(yn, x)− d(y, x)| ≤ d(yn, y)

due to the triangular inequality. Hence f(yn) → f(y). By Theorem 3.2, f attains its minimum,
so that there exists p ∈ X for which f(p) = miny∈S f(y).

Remark: p is called the best approximation of x in S.

Example 10.2 (Application of Ascoli’s theorem). Consider a family F of functions f defined as

f(x) = a sin bx+ c cos dx, 0 ≤ x ≤ π,

where the coefficients a, b, c, and d are chosen from a closed interval [−M,M ].

First, observe that the functions in F are uniformly bounded. For any f in F and any x in
[0, π], we have:

|f(x)| ≤ |a|+ |c| ≤ 2M.

Additionally, the derivatives of functions in F satisfy:

|f ′(x)| ≤ |ab|+ |cd| ≤ 2M2.

Thus, F is equicontinuous.

Given this, the family F can be treated as a subset of the continuous functions on the interval
[0, π]. Due to its equicontinuity and boundedness, F is compact in this function space.

As a result, for any continuous function g defined on [0, π], we can find a function within F that
comes closest to g in the sense of minimizing the maximum deviation over the interval. Formally,
there exist values of a, b, c, and d in [−M,M ] such that:

max
0≤x≤π

|g(x)− (a sin bx+ c cos dx)|

is minimized. A function in F achieving this minimal deviation is called a minimax approximation
to g. It’s important to note that this approximating function might not be unique.

§10.2 Topological Spaces
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Definition 10.3 (Topological Spaces) A topology on a nonempty set X is a collection T of
subsets of X satisfying the following properties:

1. X ∈ T and ∅ ∈ T (Property T1).

2. The union of any subcollection S of T belongs to T . Formally, for any subcollection S
of T : ⋃

T∈S
T ∈ T (Property T2).

3. The intersection of any two sets T1 and T2 in T belongs to T . Formally:

T1 ∩ T2 ∈ T whenever T1, T2 ∈ T (Property T3).

The pair (X, T ) is called a topological space. The sets T in T are referred to as the open
sets in (X, T ). A subset S of X is said to be closed in (X, T ) if its complement, denoted by
X \ S or ∼ S, is an open set in (X, T ).

Example 10.4 (Standard Topology on R). The most common topology on the real numbers is
the standard topology, which is generated by the open intervals. In this topology, a set U ⊆ R is
open if for every point x ∈ U , there exists an open interval (a, b) such that x ∈ (a, b) ⊆ U .

Example 10.5 (Lower Limit Topology on R). Another example is the lower limit topology on R,
which is generated by the half-open intervals of the form [a, b). A set is open in this topology if it
can be expressed as a union of such half-open intervals.

Example 10.6 (Why Infinite Intersections Aren’t Always Open). While the arbitrary union of
open sets is open (by definition of a topology), the same isn’t true for infinite intersections. To
see why, consider the standard topology on R. Take the nested sequence of open intervals:

In =

(
− 1

n
,
1

n

)
, n = 1, 2, 3, . . .

The intersection of all these intervals is {0}, which is not an open set in the standard topology on
R. Hence, while each In is open, their infinite intersection is not. This demonstrates the necessity
of the limitation in the definition of a topology that only finite intersections of open sets are
guaranteed to be open.

⋆ Given any set X, there are two fundamental topologies: The discrete topology on X, denoted Tmax, is
the collection of all subsets of X. Formally,

Tmax = P(X),

where P(X) represents the power set of X. In this topology, every subset of X is considered open. The
indiscrete topology or trivial topology on X, denoted Tmin, consists of only the empty set and X itself.
Formally,

Tmin = {∅, X}.
In this topology, no set other than the entire set and the empty set is considered open. Clearly, Tmax and
Tmin satisfy the properties of a topology, and as their names suggest, they represent the largest and smallest
collections of subsets of X that can be considered as topologies.
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Definition 10.7 (Weaker and Stronger Topologies) Given two topologies T1 and T2 on a set
X, if

T1 ⊆ T2,

then T1 is said to be weaker (or coarser) than T2, and T2 is said to be stronger (or finer)
than T1. Given any topology T on X, it must hold that

Tmin ⊆ T ⊆ Tmax,

where Tmin is the indiscrete topology and Tmax is the discrete topology. Thus, among all
possible topologies on a set X, the indiscrete topology is always the weakest (or coarsest),
and the discrete topology is always the strongest (or finest).

Example 10.8 (Illustrative Example of Topologies on a Finite Set). Consider the set X =
{1, 2, 3, 4, 5} and the collections:

T1 = {∅, {1}, {2}, {1, 2}, X},
T2 = {∅, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, X},
T3 = {∅, {1}, {1, 2}, {1, 2, 3}, X},
T4 = {∅, {1}, {2}, {1, 2}, {2, 3, 4}, X}.

It is evident that T1 and T2 are topologies on X. T1 is weaker than T2 since T1 ⊆ T2. On the
other hand, T3 is another topology for X that is weaker than T2 but is neither weaker nor stronger
than T1. For the topological space (X, T2), the closed sets are:

X, {2, 3, 4, 5}, {1, 3, 4, 5}, {3, 4, 5}, {4, 5}, {5} and ∅.

The set {2, 3} is neither open nor closed in this topology. The interior of {2, 3} is {2} and its closure
is {2, 3, 4, 5}. However, T4 is not a topology on X because the union {1} ∪ {2, 3, 4} = {1, 2, 3, 4}
is not an element of T4, violating the property that arbitrary unions of open sets should remain
open.

Definition 10.9 (Interior and Closure in Topological Spaces) Let X be a topological space.

Interior: The interior of a subset S of X is the union of all open sets contained in S. It is
denoted by int(S) or S◦.

Closure: The closure of a subset S of X is the intersection of all closed sets containing S.
It is denoted by cl(S) or S.

Every metric space has an associated topology, called the metric topology, derived from its
metric. This enables us to study metric spaces in the context of topological spaces.
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Definition 10.10 (Metric Topology in Metric Spaces) Let (X, d) be a metric space.

• Open Ball: For a point x0 in X and a positive real number r, the set

{x : x ∈ X, d(x, x0) < r}

is called an open ball in X. It represents the set of all points in X that are less than r
distance away from x0. This set is denoted by b(x0, r) and is referred to as the open
ball with center x0 and radius r.

• Open Sets: A subset T of X is called open if T = ∅ or for every point in T , there
exists an open ball centered at that point which is completely contained in T .

• Metric Topology: The metric topology Td for X is the collection of all open sets,
as defined above. Thus, a subset T of X is in Td if and only if for each x in T , there
exists some radius r such that the open ball b(x, r) is a subset of T .

a

aIt can be shown that the collection Td of open sets satisfies the properties of a topology, making (X, Td) a
topological space. By convention, when we refer to a metric space as a topological space, it is implied
that we are considering its associated metric topology.
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Recall that if (X, d) is a metric space, a set U is open if ∀x ∈ U,∃ϵ > 0 such that B(x, ϵ) ⊆ U or
U = ∅.

• Real Numbers R:

– Metric: d(x, y) = |x− y|

– Open ball: B(x0, ϵ) = (x0 − ϵ, x0 + ϵ)

– Example: For x0 = 2 and ϵ = 0.5, the open ball is B(2, 0.5) = (1.5, 2.5).

• Euclidean Plane R2:

– Open ball: Set of all points inside the circle of radius ϵ centered at (x0, y0) without
the boundary.

– Example: For (x0, y0) = (1, 2) and ϵ = 1, the open ball is the interior of the circle of
radius 1 centered at (1, 2).

• Euclidean 3-space R3:

– Open ball: Set of all points inside the sphere of radius ϵ centered at (x0, y0, z0) without
the boundary.

– Example: For (x0, y0, z0) = (1, 2, 3) and ϵ = 1, the open ball is the interior of the
sphere of radius 1 centered at (1, 2, 3).

• Continuous Functions C[a, b]:

– Metric: d(f, g) = supx∈[a,b] |f(x)− g(x)|

– Open ball: Set of all functions g such that d(f0, g) < ϵ.

– Example: Let f0(x) = x on [0, 1]. The open ball of radius ϵ = 0.5 centered at f0
contains functions g on [0, 1] with supx∈[0,1] |x− g(x)| < 0.5.

§11.1 Closed Sets

Recall: Let (X, d) be a metric space. A set S ⊂ X is said to be sequentially closed if for every
sequence {xn} in S that converges in X, we have limn→∞ xn = x implies x ∈ S. If (X, τ) is a
topological space, a set S ⊆ X is called closed if its complement Sc in X is open.

Theorem 11.1 — Let (X, d) be a metric space and let τd denote the metric topology
induced by d. A set S ⊆ X is closed in the metric topology if and only if it is sequentially
closed in X.

Proof. Only if part: Suppose that S ⊆ X is closed. We have to prove that S is sequentially
closed. Let {xn} be a sequence in S such that x = limn→∞ xn exists. We want to show that
x ∈ S. Suppose that x ∈ Sc. Since S is closed, Sc is open. Hence, ∃ϵ > 0 such that B(x, ϵ) ⊆ Sc.
Since xn → x, there exists N ∈ N such that xn ∈ B(x, ϵ) for all n > N . So xn ∈ Sc ∀n > N .
This is a contradiction since {xn} is a sequence in S. Recall that: xn → xmeans that d(xn, x) → 0.

“ =⇒ ” : Now suppose that S ⊆ X is sequentially closed. We have to prove that S is
closed, i.e., Sc is open. Suppose that Sc is not open. This means that there exists an x ∈ Sc such
that for all δ > 0, B(x, δ) ⊈∈ Sc. [Complete the proof]

⋆ Given a topological space (X, τ) it is not always possible to find a distance d on X such that τ = τd. If
this is possible, we that τ is metrizable.
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Definition 11.2 Let (X, τ) be a topological space.

(a) If x ∈ X and U ⊆ X is an open set such that x ∈ U , then we say that U is a
neighbourhood of x.

(b) A point x ∈ X is called a cluster point (or accumulation point) of a set S ⊆ X if every
neighbourhood U of x intersects S in at least one point other than x (when x ∈ S).

(c) The set of all cluster points of S is called the derived set (or limit point set) of S and is
denoted by S′.

(d) A point x ∈ X is called an adherent point of S if, for every neighbourhood U of x,
U ∩ S ̸= ∅. This implies that x can be either in S or not in Sa.

aSo, every cluster point is indeed a adherent (closure) point. However, not all closure points are cluster
points because a adherent (closure) point could be a point in S that doesn’t have other points from S
arbitrarily close to it.

Lemma 11.3 — Let (X, τ) be a topological space and S ⊆ X. Then x ∈ S̄ ⇐⇒ x is an
adherent point.

Proof. Complete the proof. Its pretty long.

Lemma 11.4 — Let (X, T ) be a topological space and S ⊆ X. Then x ∈ S̄ (where S̄ is
the closure of S) if and only if x is an adherent point of S, where the closure S̄ of S was
defined as follows:

S̄ =
⋂

{F | F closed, F ⊇ S} (i.e., S̄ is the smallest closed set which contains S)

Proof. (⇒) Suppose that x is an adherent point of S. We need to prove that x ∈ S̄. By
contradiction, suppose that x ∈ (S̄)c. Note that

(S̄)c =
⋃

{F c | F closed, F ⊇ S} =
⋃

{U | U open, U ⊆ Sc}

by De Morgan’s laws. This means that there exists an open set U with U ⊆ Sc such that x ∈ U .
Hence U ∩ S = ∅. This contradicts the definition of x being an adherent point of S; namely, we
were able to find a neighborhood U of x such that U ∩ S = ∅.
(⇐) Suppose that x ∈ S̄. We want to prove that x is an adherent point. By contradiction,

suppose that x is not an adherent point by contradiction, suppose that x is not an adherent point.
Then, there exists a neighborhood U of x such that U ∩ S = ∅. Recall: U is open and x /∈ U .
U ∩ S = ∅ is equivalent to saying that S ⊆ U c and U c is closed and contains S, hence S̄ ⊆ U c.
From here, we deduce that U ⊆ S̄c. Hence x ∈ S̄c (since x ∈ U). This is a contradiction.
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Recall: (X, T ) is a topological space, S ⊆ X.

• We say that x is a cluster point of S if (U \ {x}) ∩ S ̸= ∅ for any neighborhood U of x.

• We say that x is an adherence point of S if U ∩ S ̸= ∅ for any neighborhood U of x.

Lemma 12.1 — Assume that (X, d) is a metric space endowed with the metric topology.
Then x ∈ X is an adherent point of S if and only if there is a sequence {xn} in S such that
limn→∞ xn = x.

Proof. a) Suppose that x is an adherent point. For any n ≥ 1, there exists xn ∈ B(x, 1
n ) ∩ S.

Then d(xn, x) <
1
n for any n. So limn→∞ xn = x.

b) Suppose that there exists a sequence {xn} in S such that limn→∞ xn = x. We have to show
that x is an adherent point of S. Let U be a neighborhood of x. Then there exists δ > 0 such
that B(x, δ) ⊆ U . Since xn → x, there exists N ∈ N such that xn ∈ B(x, δ) for all n ≥ N . So
xn ∈ U ∩ S for all n ≥ N . Hence U ∩ S ̸= ∅.

§12.1 Closed Sets continued

Theorem 12.2 — A set S in a topological space is closed if and only if it contains cluster
points, that is S ⊇ S′a.

aS′ is the set of all cluster point i.e., the derived set

Proof. Prove this.

§12.2 Compact Sets

In any metric space (X, d) containing at least two distinct points x and y, we can always find open
balls centered at x and y that are disjoint. For example, take the open balls B(x, r) and B(y, r),
with r < 1

2d(x, y). Not all topological spaces possess this property. However, this property is
fundamental for many analyses in topology. Spaces with this property are given a special name:
they are called Hausdorff spaces or T2 spaces.

Definition 12.3 (Compactness) A subset S of a topological space is said to be compact if
for every collection {Uα} of open sets such that S ⊆

⋃
α Uα (i.e., the union of the sets in

the collection contains S), there exists a finite sub-collection {Uα1
, Uα2

, . . . , Uαn
} such that

S ⊆
⋃n

i=1 Uαi
.

Theorem 12.4 (Equivalence of Compactness Theorem ) — Let (X, d) be a metric space.
Then, a subset S ⊆ X is compact if and only if it is sequentially compact.

Proof. Omitted.

Definition 12.5 (Hausdorff Space) A topological space (X, T ) is called a Hausdorff space,
and T is called a Hausdorff topology, if for every pair of distinct points x, y ∈ X, there exists
a neighbourhood Ux of x and a neighbourhood Uy of y such that Ux ∩ Uy = ∅.

In essence, a space X is termed Hausdorff when any two distinct points within it can be
enclosed by non-overlapping neighbourhoods. It’s established that all metric spaces possess this
Hausdorff property. Likewise, any set endowed with the discrete topology, denoted as Tmax, is also
Hausdorff. In contrast, the indiscrete topology, Tmin, doesn’t meet the Hausdorff criterion unless
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it’s defined over a set with a single point or none. Amidst the diverse spectrum of topological
properties, the Hausdorff characteristic stands out as a fundamental trait shared by numerous,
albeit not all, topological spaces.

Lemma 12.6 (Metric Spaces are Hausdorff) — Let (X, d) be a metric space, and let τd be
the topology induced by d. Then, the topological space (X, τd) is a Hausdorff space.

Proof. Let x, y ∈ X be distinct points. Since d(x, y) > 0, we can choose ϵ = d(x,y)
2 . Consider the

open balls B(x, ϵ) and B(y, ϵ). Clearly, x ∈ B(x, ϵ) and y ∈ B(y, ϵ). Moreover, B(x, ϵ) and B(y, ϵ)
are disjoint because for any point z in their intersection, we would have d(x, z) < ϵ and d(y, z) < ϵ,
which contradicts the triangle inequality. Thus, we have found disjoint open neighborhoods for x
and y, and so (X, τd) is Hausdorff.

Theorem 12.7 (Compact Sets in Hausdorff Spaces) — Let (X, τ) be a Hausdorff topological
space. Then, every compact subset K of X is closed.

Proof. To show that K is closed, it suffices to show that its complement X \K is open. Let
x ∈ X \K. For each y ∈ K, since (X, τ) is Hausdorff, there exist open sets Uy and Vy such that
x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. The collection {Vy} forms an open cover for K. Since K is
compact, there exists a finite subcollection {Vy1 , Vy2 , . . . , Vyn} that covers K. Let U = ∩n

i=1Uyi .
Then, U is an open set containing x that does not intersect K. Hence, X \K is open, and K is
closed.

Theorem 12.8 (Heine-Borel Theorem) — Let S ⊆ R. The subset S is compact in R with
the standard topology if and only if S is both closed and bounded.

Proof. (⇒) Direction: Suppose S is compact.

• Boundedness: If S were not bounded, for each n ∈ N, pick xn ∈ S such that |xn| > n. This
would produce a sequence without a convergent subsequence in S, which contradicts the
compactness of S.

• Closedness: Let (xn) be a sequence in S that converges to x. Since S is compact, the
sequence has a convergent subsequence that also converges to x. Thus, x must be in S,
implying S is closed.

(⇐) Direction: Suppose S is both closed and bounded. By Bolzano-Weierstrass, any sequence
in S has a convergent subsequence. Since S is closed, the limit of this subsequence also lies in S.
Hence, S is compact by the sequential characterization of compactness.

§12.3 Continuity in Topological spaces

In calculus, we typically define continuity in terms of limits and the behavior of functions on
the real numbers. However, in the broader setting of topological spaces, we use the open set
definition, which captures the essence of continuity in a more general setting.

Definition 12.9 (Sequential Continuity in Metric Spaces) Let (X, d) and (Y, d′) be two metric
spaces. A function f : X → Y is said to be sequentially continuous at a point x ∈ X if
for every sequence {xn} in X that converges to x (i.e., xn → x as n → ∞), the sequence
{f(xn)} in Y converges to f(x) (i.e., f(xn) → f(x) as n→ ∞.

Definition 12.10 (Continuity on R) Let f : R → R be a function and let c be a point in its
domain. The function f is said to be continuous at c if, for every ϵ > 0, there exists a δ > 0
such that, for all x in R satisfying 0 < |x− c| < δ, we have |f(x)− f(c)| < ϵ.
The function f is said to be continuous on R if it is continuous at every point c in its

domain.
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Definition 12.11 Let (X, T ) be a topological space.

(a) We say that a sequence {xn} in X converges to a limit x ∈ X if for any neighbourhood
U of x, there exists N ∈ N such that xn ∈ U for all n > N .

(b) Let (Y, T ′) be another topological space and f : X → Y . We say that f is sequentially
continuous at x ∈ X if, for every sequence {xn} ⊂ X such that xn → x, we have
f(xn) → f(x).
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§13.1 Continuous functions in topological spaces

Let (X,Y ), (Y, Y ′) be topological spaces; A : X → Y .

• A is necessary continuous if for every sequence xn → x in X then Axn → Ax in Y .

• A is continuous at x if for every neighborhood V of Ax there exists a neighborhood U of x
such that if y ∈ U then Ay ∈ V .

(Recall: f : R → R is continuous at x if for every ε > 0 there exists δ > 0 such that if y−x| < δ
then |f(y)− f(x)| < ε.)1

Theorem 13.1 — Let A be a function from the topological space X to the topological
space Y . The following statements are considered equivalent:

1. A is continuous over X.

2. The preimage of every open set in Y under A is an open set in X.

3. The preimage of every closed set in Y under A is a closed set in X.

Proof. ⋆ The equivalence of these statements offers an alternative definition of continuity: a function is
continuous if the preimage of every open set in the codomain is an open set in the domain. The proof follows
the logical sequence: (1) ⇒ (2) ⇒ (3) ⇒ (2) ⇒ (1). To demonstrate that statement 1 implies statement 2,
assume that A is continuous and consider any open set T in Y . For any element x in X such that Ax is in
T , there exists a neighborhood around x that is completely contained within the preimage of T under A. As
a result, this preimage is a union of open sets and therefore open itself. To show that statement 2 implies
statement 3, start with a closed set S in Y , so the complement of S is open. By assumption, its preimage
under A is open in X, which implies that the preimage of S is closed in X. To conclude that statement 3
implies statement 2, use a similar argument by interchanging the roles of open and closed sets. Finally, to
confirm that statement 2 implies statement 1, take any point x in X and a neighborhood V of Ax in Y .
The preimage of V is an open set that contains x, establishing the continuity of A at x.

(a) ⇒ (b) Let T be an open set in Y . Since A is continuous at x, for any x ∈ X, there exists
a neighborhood Ux of x such that Ux ⊆ A−1(T ). Claim:

⋃
x∈X Ux = A−1(T )

Hence, A−1(T ) is an open set, since it is the union of open sets.
(b) ⇒ (a) Let x ∈ X be arbitrary and V a neighborhood of Ax. Then by (b), A−1(V ) is

open in X. Moreover, Ax ∈ V and so x ∈ A−1(V ). So, A−1(V ) is a neighborhood of x. Take
U = A−1(V ). Clearly, U ⊆ A−1(V ), and A is continuous.
(b) ⇒ (c) Let S be a closed subset in Y . Then Sc is an open set in Y . By (b), A−1(Sc) is

open in X.
Recall: Theorem 5.4.2 (a): A−1(Sc) = [A−1(S)]c

In our case, A−1(Sc) = [A−1(S)]c is open. Hence, A−1(S) is closed.
(c) ⇒ (b) Same argument as for (b) ⇒ (c), swapping the words ”closed” and ”open”.

Theorem 13.2 — Let (X, T ) and (Y, T ′) be topological spaces, and let A : X → Y . If A is
continuous on X, then A is sequentially continuous.

Proof. Let x ∈ X and {xn} be a sequence in X such that xn → x. We need to prove that
Axn → Ax. Let V be a neighborhood of Ax. By the continuity of A, A−1(V ) is an open set in
X containing x, which means that x ∈ A−1(V ).

Hence, A−1(V ) is a neighborhood of x. Since xn → x, there existsN ∈ N such that xn ∈ A−1(V )
for all n ≥ N . This means that Axn ∈ V for all n ≥ N . Thus, Axn → Ax.

1Remark: (1) says U ⊆ A−1(V ) = {x ∈ X;Ax ∈ V }.
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Theorem 13.3 — Let (X, d) and (Y, d′) be metric spaces, and A : X → Y . If A is
sequentially continuous on X, then A is continuous on X.

Proof. Let x ∈ X be arbitrary, y = Ax and V a neighborhood of y. Since Y is endowed with
the metric topology, V is open in this topology, which means that there exists ε > 0 such that
By(y, ε) ⊆ V .

Suppose thatA is not continuous at x. Then there is no δ > 0 such thatBx(x, δ) ⊆ A−1(By(y, ε))
(because if there exists such a δ, then Bx(x, δ) ⊆ A−1(By(y, ε)) = A−1(V ) and then A would be
continuous at x).
This means that for all ε > 0, Bx(x, ε) ̸⊆ A−1(By(y, ε)) (i.e., there exists xε ∈ Bx(x, ε) and

xε ̸∈ A−1(By(y, ε)).
Take δ = 1

n and denote xδ = x 1
n

∈ Bx(x,
1
n ) and xδ ̸∈ A−1(By(y, ε)). This means that

d(x, xδ) <
1
n for all n ≥ 1. Hence xδ → x. Since A is sequentially continuous, Axδ → Ax = y.

This means that there exists N ∈ N such that Axδ ∈ By(y, ε) for all n ≥ N . Therefore
xδ ∈ A−1(By(y, ε)) for all n ≥ N . This is a contradiction.
Hence, A must be continuous at x.

§13.2 Normed Vector Spaces

Definition 13.4 A vector space over a field F (where F = R or F = C) is a set X ̸= ∅
together with two binary operations:

• + : X ×X → X which maps (x, y) to x+ y,

• · : F ×X → X which maps (α, x) to αx,

such that the following properties hold:

1. Associativity of addition: (x+ y) + z = x+ (y + z) for all x, y, z ∈ X

2. Commutativity of addition: x+ y = y + x

3. Identity element of addition: There exists 0 ∈ X such that x+ 0 = x for all x

4. Inverse elements of addition: For every x ∈ X there exists −x ∈ X such that
x+ (−x) = 0

5. Compatibility of scalar multiplication with field multiplication: a(bx) = (ab)x for all
a, b ∈ F and x ∈ X

6. Identity element of scalar multiplication: There exists 1 ∈ F such that 1 · x = x for all
x

7. Distributivity of scalar multiplication with respect to vector addition: a(x+y) = ax+ay
for all a ∈ F , x, y ∈ X

8. Distributivity of scalar multiplication with respect to field addition: (a+ b)x = ax+ bx
for all a, b ∈ F , x ∈ X

Definition 13.5 A normed vector space (or simply normed space) is a vector space together
with a map ∥ · ∥ : X → [0,∞), called a norm, that the following properties hold:

(N1) ∥x∥ = 0 if and only if x = 0.

(N2) ∥ax∥ = |a| · ∥x∥ for all a ∈ F, x ∈ X.

(N3) (Triangular inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

Remark 13.6. If (X, ∥·∥) is a normed space, then (X, d) is a metric space, where d(x, y) = ∥x−y∥,
properties (M1) to (M3) hold:
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(M1) d(x, y) = 0 if and only if x = y (clear due to (N1)).

(M2) d(x, y) = ∥x− y∥ = ∥y − x∥ = d(y, x).

(M3) d(x, z) ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z).

A ball in a normed space is:

B(x, ε) = {y ∈ X; ∥y − x∥ < ε}

Example 13.7. Examples of normed spaces include:

• X = Rn with the Euclidean norm ∥x∥ =
(∑n

i=1 |xi|2
) 1

2 .

• X = Cn with the maximum norm ∥x∥∞ = maxi=1,...,n |xi|.

• X = ℓp for p ≥ 1 with the ℓp norm ∥x∥p = (
∑∞

i=1 |xi|p)
1
p .

Remark 13.8. Question: If (X, d) is a metric space, does it imply we have a norm ∥x∥ on X
such that d(x, y) = ∥x− y∥ for all x, y ∈ X? No.
Suggestion: Take ∥x∥ = d(x, 0) and check properties (M1)–(M3). (M1) clearly holds.
(M2): If ∥ax∥ = d(ax, 0), we don’t know if this is equal to |a|d(x, 0).

Normed spaces are contained in the set of metric spaces, which in turn are contained in the set
of topological spaces.

Example 13.9. Example of a metric space that is not a normed space: Let X = ℓ2 ={
x = {xi}∞i=1 | xi ∈ C,

∑∞
i=1 |xi|2 <∞

}
. Then ℓ2 is a normed space with the norm ∥x∥ =(∑∞

i=1 |xi|2
) 1

2 .

42



43

§14 November 6, 2023

§14.1 Normed Spaces

Example 14.1. For X = Rn, the norm is defined as

∥x∥ =

(
n∑

i=1

|xi|2
) 1

2

.

For X = ℓ2, the norm is given by

∥x∥ =

( ∞∑
i=1

|xi|2
) 1

2

.

For X = C[a, b], we have several norms:

• The uniform norm: ∥x∥ = maxt∈[a,b] |x(t)|.

• The L1 norm: ∥x∥1 =
∫ b

a
|x(t)|dt.

• The Lp norm for p ≥ 1: ∥x∥p =
(∫ b

a
|x(t)|pdt

) 1
p

.

§14.2 Convergence in Normed Spaces

A sequence {xn} in a normed space (X, ∥ · ∥) converges to x ∈ X if

∀ε > 0 ∃N ∈ N such that ∥xn − x∥ < ε ∀n ≥ N.

A sequence {xn} is Cauchy if

∀ε > 0 ∃N ∈ N such that ∥xn − xm∥ < ε ∀n,m ≥ N.

Remark 14.2. Observation: If {xn} is convergent then {xn} is Cauchy.

Definition 14.3 A Banach space is a complete normed space.

Recall: ”Complete” means that every Cauchy sequence is convergent.
Examples:

• Rn with Euclidean norm are Banach spaces.

• ℓ2 is a Banach space.

• C[a, b] with uniform norm is a Banach space.

Remark 14.4. If X is a normed space and A : X → X is a map, then A is a contraction if there
exists α ∈ (0, 1) such that:

∥Ax−Ay∥ ≤ α∥x− y∥ ∀x, y ∈ X.

⋆ A contraction is a continuous map: if xn → x then Axn → Ax sequentially because ∥Axn − Ax∥ ≤
α∥xn − x∥ → 0.
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Theorem 14.5 (Fixed Point Theorem) — Let (X, ∥ · ∥) be a Banach space. If A : X → X is
a contraction, then there is a unique x ∈ X such that Ax = x.

Let (X, ∥ · ∥) be a normed space. A subset S ⊆ X is sequentially compact if for every sequence
{xn} ⊆ S there is a convergent subsequence {xnk

} whose limit x is also in S.2

A subset S ⊆ X is compact if every covering of S has a finite subcover.

(a) If S is compact then S is closed (Th 5.3.3).

(b) S is compact if and only if S is sequentially compact (Th 5.3.3).

(c) If S is sequentially compact then S is bounded (Th 4.1.5).

Definition 14.6 Let (X, ∥ · ∥) be a normed space and a sequence {xk} ⊆ X.

1. We say that the series
∑∞

k=1 xk converges if the partial sum sequence {
∑n

k=1 xk}n≥1
converges to a limit x ∈ X. In this case, we say that x is the sum of the series and we
write

∑∞
k=1 xk = x.

2. We say that the series
∑∞

k=1 xk converges absolutely if the series
∑∞

k=1 ∥xk∥ (of
non-negative real numbers) converges.

Theorem 14.7 (Theorem from MAT 2125) — If X = R and
∑∞

k=1 xk converges absolutely,
then

∑∞
k=1 xk converges.

Remark 14.8. Observation: The converse may not be true.

Theorem 14.9 — Let (X, ∥ · ∥) be a normed space. Then X is a Banach space if and only
if every absolutely convergent series in X is convergent.

Proof. “Only If” Part: Suppose that X is a Banach space. We have to prove that every
absolutely convergent series is convergent. Let

∑∞
k=1 xk be an absolutely convergent series in

X. By definition,
∑∞

k=1 ∥xk∥ converges in R. Hence the partial sum sequence {Sn}, where
Sn =

∑n
k=1 ∥xk∥, converges to a limit S ∈ R.

Then {Sn} is a Cauchy sequence in R, i.e., ∀ε > 0 ∃N ∈ N such that |Sn −Sm| < ε ∀n,m > N .
Note that for any n > m > N ,

Sn − Sm =

n∑
k=m+1

∥xk∥ ≥ 0,

so Sn ≥ Sm. Let xn =
∑n

k=1 xk. Then xn − xm =
∑n

k=m+1 xk, and so, by the triangular
inequality,

∥xn − xm∥ ≤
n∑

k=m+1

∥xk∥ = Sn − Sm < ε

for all n > m > N . This proves that {xn} is a Cauchy sequence in X. Since X is a Banach space,
{xn} is convergent. Hence, the series

∑∞
k=1 xk is convergent.

“If” Part: Suppose that every absolutely convergent series in X is convergent. We have to prove
that X is a Banach space. Let {xn} be a Cauchy sequence in X. We will use the following result:
Theorem : Let (X, d) be a metric space, if {xn} is a Cauchy sequence in X with a convergent
subsequence {xnk

} with limit x, then xn → x as n→ ∞.
Since {xn} is Cauchy, for every ε > 0, there exists N ∈ N such that ∥xn − xm∥ < ε ∀n,m > N .
Take ε = 1

2k
for k ∈ N and let Nk = N 1

2k
. We may assume that N1 < N2 < N3 < . . .. Choose

2S may not be a vector subspace of X.
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arbitrary integers n1 < n2 < n3 < . . . with nk > Nk for all k ∈ N. Then ∥xnk
− xnm

∥ < 1
2k
, due

to the inequality applied to ε = 1
2k
. Hence

∑∞
k=1 ∥xnk

− xnk+1
∥ <∞. This proves that the series∑∞

k=1(xnk
− xnk+1

) is absolutely convergent.
By hypothesis, this series is convergent. Let Sm =

∑m
k=1(xnk

− xnk+1
) be the partial sum

sequence of the series. We prove that {Sm} converges to a limit ∆ ∈ X. Therefore, xnm
=

(xnm
− xn1

) + xn1
= Sm + xn1

converges as m → ∞ to S + xn1
. This means that {xnm

} is a
convergent subsequence of {xn}. By the aforementioned theorem, we infer that {xn} converges.
Hence X is a Banach space.

Corollary 14.10

Let (X, ∥ · ∥) be a normed space. Then X is not complete if and only if there exists an
absolutely convergent series which is not convergent.

Example 14.11. Consider X = C[0, 2] endowed with the L1 norm: ∥x∥1 =
∫ 2

0
|x(t)|dt. Define

the function fk(t) as:

fk(t) =

{
1− t2

2 , if 0 ≤ t ≤ 2
k

0, if 2
k < t ≤ 2

for t ∈ [0, 2]

The series
∑∞

k=1 fk is absolutely convergent with respect to ∥ · ∥1, but not convergent.
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§15 November 9, 2023

§15.1 Homeomorphisms

Definition 15.1 (Homeomorphism) Let X and Y be topological spaces. A function f : X → Y
is called a homeomorphism if it satisfies the following conditions:

1. f is a bijection (one-to-one and onto).

2. f is continuous.

3. The inverse function f−1 : Y → X is also continuous.

If such a function f exists, then X and Y are said to be homeomorphic.

Recall: A bijection is a function that is both one-to-one and onto, and it always possesses an
inverse function. Therefore, there exists a one-to-one correspondence between the points of two
spaces if they are homeomorphic. Furthermore, since continuous mappings have the property
that the inverse images of open sets are open, and both a homeomorphism and its inverse are
continuous, it follows that there is also a one-to-one correspondence between the open sets of the
two homeomorphic spaces.

For these reasons, in topology, two spaces that are homeomorphic are considered to be essentially
identical. This is because homeomorphisms preserve the topological structure of spaces, meaning
that the properties that are purely topological (like connectedness, compactness, continuity, etc.)
are invariant under homeomorphisms.

Definition 15.2 A property P is called a topological property if the fact that P holds in
a topological space (X, T ) implies that P holds in any topological space (Y, T ′) which is
homeomorphic to (X, T ).

⋆ A topological property is a feature of a space that is preserved under homeomorphisms. In other words, it
is a property shared by all topological spaces that are homeomorphic to each other. These properties are
intrinsic to the space’s structure, irrespective of how the space is embedded or represented in a larger space.

Topological properties are fundamental to the study of topology, which can be thought of as the
examination of properties that remain invariant under continuous deformations (like stretching,
bending, but not tearing or gluing). This is why topology is sometimes colloquially referred to as
‘rubber sheet geometry’. In this analogy, a topological space can be envisioned as drawn on a
rubber sheet, where homeomorphic transformations are akin to stretching or bending the sheet
without tearing or cutting it.

For instance, compactness is a topological property because if one space is compact, any space
homeomorphic to it is also compact. However, completeness, which is often considered in the
context of metric spaces, is not a topological property. This is evident from the fact that there
are homeomorphic metric spaces where one is complete and the other is not. 3

Example 15.3 (Completeness is not a topological property.). The function A : [1,∞) → (0, 1]
defined by A(x) = 1

x is a homeomorphism between [1,∞) and (0, 1]. Both spaces [1,∞) and
(0, 1] are endowed with the standard distance d(x, y) = |x− y|. This distance induces the metric
topologies T and T ′ respectively, where:

• X = [1,∞) is endowed with topology T .

• Y = (0, 1] is endowed with topology T ′.

• The space [1,∞) is complete: any Cauchy sequence is convergent within the space.

3A classic example of this concept is the topological equivalence of a circle and an ellipse, or a circle and a
rectangle. Despite their different geometric shapes, from a topological perspective, they are identical because
they can be transformed into one another through continuous deformation without tearing or gluing.
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• The space (0, 1] is not complete: the sequence
{

1
n

}
n∈N is a Cauchy sequence in (0, 1], but

it does not converge within (0, 1].

⋆ A function is non-injective (not 1-to-1) if different elements in the domain map to the same element in
the codomain. Here are two examples:

1. The squaring function f : R → R, defined by f(x) = x2, is not injective because f(1) = f(−1) = 1.

2. The sine function g : R → [−1, 1], defined by g(x) = sin(x), is not injective since g(x) = g(x+ 2π) for
all x ∈ R.

Theorem 15.4 — Let A : X → Y be a continuous mapping between topological spaces X
and Y , and let S be a compact subset of X. Then A(S) is a compact subset of Y .

Proof. For the proof, let V be an open covering of A(S). Since A is continuous, A−1(V ) is an open
set in X, for each V ∈ V. We will show that U = {A−1(V ) : V ∈ V} is an open covering of S. If
x ∈ S, then Ax ∈ A(S) so that Ax ∈ V for some V ∈ V . Then x ∈ A−1(V ). So indeed U is an open
covering of S. Since S is compact, there is a finite subcovering {A−1(V1), A

−1(V2), . . . , A
−1(Vn)},

say, chosen from U . If y ∈ A(S), then y = Ax for some x ∈ S, and x ∈ A−1(Vk) for some
k = 1, 2, . . . , n. Then Ax = y ∈ Vk. This shows that {V1, V2, . . . , Vn} is a finite subcovering of
A(S), chosen from V. Hence A(S) is compact.

Theorem 15.5 (Compact-Hausdorff Homeomorphism) — Let (X, T ) and (Y, T ′) be topological
spaces. Assume that:

• X is compact,

• Y is Hausdorff, i.e., ∀x, y ∈ Y there exist neighbourhoods U of x and V of y such that
U ∩ V = ∅.

If A : X → Y is a continuous bijection, then A is a homeomorphism.

Proof. We have to show that A−1 is continuous, i.e., (A−1)−1(T ) ∈ T for any T ∈ T . Recall
A−1 : Y → X (by Theorem 5.5.1). Let T ⊆ X be an open set. We have to prove that A(T ) is
open in Y . Then T c is a closed set in X. Moreover, since T c is a subset of X, which is compact
by our hypothesis, by Lemma 1, T c is compact. By Theorem 5.5.2, A(T c) is compact in Y .
Recall Theorem 5.3.3: In a Hausdorff space, any compact set is closed. Since Y is Hausdorff,
by Theorem 5.5.2, A(T c) is closed in Y . Hence ∼ A(T c), which is A(T ), is open in Y . This is
because A is a bijection, i.e., A(T )c = A(T c). Use Theorem 5.4.2(d), which states that for any
function f , we have f−1(D)c = f−1(Dc). We apply this theorem with f = A−1 and D = T c.
This proves that A(T ) is open.

Lemma 15.6 (Closed Subset Compactness) — In any topological space (X, T ), any closed
subset of a compact set is compact.

Proof. Let S ⊆ X be a compact set and T ⊆ S be a closed set. We have to prove that T is
compact. Let V be an open covering of T , i.e.,

T ⊆
⋃
V ∈V

V and V ∈ V.

Note that

S = S ×X = T ∪ T c =

( ⋃
V ∈V

V

)
∪ T c,

where T c is the complement of T in S and is open since T is closed. So V ∪ {T c} is an open
covering of S. Since S is compact, there exists a finite subcovering {T1, . . . , Tn} of S, chosen from
V ∪ {T c}. We have two cases:
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a) If the list T1, . . . , Tn does not include T c, then Ti ∈ V for i = 1, . . . , n and

T ⊆ S ⊆
n⋃

i=1

Ti;

so {T1, . . . , Tn} is a finite subcovering of T , with sets chosen from V.

b) If T c = Tn for some i = 1, . . . , n, say T c = Tn, then

T ⊆ S ⊆
( n−1⋃

i=1

Ti

)
∪ T c,

which implies that

T ⊆
( n−1⋃

i=1

Ti

)
;

so {T1, . . . , Tn−1} is a finite subcovering of T , with sets chosen from V.
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§16.1 Connectedness

Definition 16.1 (Disjoint) Two sets A and B are said to be disjoint if A ∩ B = ∅. We
sometimes write A ⊔ B for the union of A and B when these sets are disjoint. So the
statement ‘X = A ⊔B’ means that X = A ∪B and A ∩B = ∅.

Definition 16.2 (Separation, connected, disconnected) Let (X, T ) be a topological space.

a) A separation (or partition) of a subset S ⊆ X is a pair (T1, T2) of nonempty, disjoint
open sets in X such that:

(i) T1 ∩ S ̸= ∅ and T2 ∩ S ̸= ∅,
(ii) S = (T1 ∩ S) ∪ (T2 ∩ S) a

b) A set S is disconnected if it has a separation.

c) A set S is connected if it has no separation.

aS ⊆ T1 ∪ T2 and T1 ∩ T2 ∩ S = ∅.

(a) Assume S = X. Then a separation of X is a pair (T1, T2) of disjoint open sets such that
X = T1 ∪ T2, T1 ̸= ∅, T2 ≠ ∅. X is connected if it cannot be written as X = T1 ∪ T2 with
T1, T2 open, disjoint, non-empty. Note that T1 = T c

2 is a closed set (since it is the complement
of an open set) and T2 = T c

1 is a closed set. X is disconnected ⇔ there exists a subset T1 of
X which is both open and closed (hence T2 = T c

1 ; then X = T1 ∪ T2). X is connected ⇔ ∅
and X are the only subsets of X which are both open and closed.

(b) In any topological space (X, T ), {x} is connected, for any x ∈ X.

Theorem 16.3 (Continuous Image Connectedness Theorem) — Let A : X → Y be a
continuous mapping between topological spaces. If S is a connected subset of X then A(S)
is a connected subset of Y .

Proof. To prove this, suppose there exists a separation (T1, T2) of A(S). Then we will show that
(S1, S2), where S1 = A−1(T1) and S2 = A−1(T2), is a separation of S, contradicting the fact
that S is connected. Certainly, S1 and S2 are open sets in X, since T1 and T2 are open in Y
and A is continuous. If x ∈ S1 ∩ S2, then we easily see that Ax ∈ T1 ∩ T2. But T1 ∩ T2 = ∅, so
S1 ∩ S2 = ∅. We know that T1 ∩A(S) ̸= ∅. Take any point y ∈ T1 ∩A(S) and say y = Ax. Then
x ∈ A−1(T1) = S1 and x ∈ S, so S1 ∩ S ̸= ∅, and similarly S2 ∩ S ̸= ∅. Finally, suppose x ∈ S,
so that Ax ∈ A(S) = (T1 ∩A(S)) ∪ (T2 ∩A(S)). If Ax ∈ T1 ∩A(S) then x ∈ A−1(T1 ∩A(S)) =
A−1(T1) ∩A−1(A(S)), by Theorem 5.4.2(c). In particular, x ∈ A−1(T1) = S1, so x ∈ S1 ∩ S. If
Ax ∈ T2 ∩ A(S), then we proceed similarly, and conclude that x ∈ (S1 ∩ S) ∪ (S2 ∩ S), so that
S ⊆ (S1 ∩ S) ∪ (S2 ∩ S). The reverse inclusion is obvious, so S = (S1 ∩ S) ∪ (S2 ∩ S). We have
shown that (S1, S2) is a separation of S, as required.

§16.2 Finite-dimensional normed vector spaces
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Definition 16.4 (Vector Space Terminology) Let V be a vector space over the field F (where
F = R or F = C), and let {v1, v2, . . . , vn} be a subset of V .

(a) A linear combination of v1, v2, . . . , vn is a vector x of the form:

x =

n∑
k=1

αkvk,

where α1, α2, . . . , αn ∈ F. The scalars αk are called the coefficients of vk, for k =
1, 2, . . . , n.

(b) The set {v1, v2, . . . , vn} is linearly independent if the only scalars α1, α2, . . . , αn for
which

n∑
k=1

αkvk = 0

are α1 = α2 = · · · = αn = 0. If there exists a non-trivial combination (i.e., not all αk

are zero) that sums to the zero vector, then the set is linearly dependent.

(c) The span of {v1, v2, . . . , vn}, denoted by Sp{v1, v2, . . . , vn}, is the set of all linear
combinations of v1, v2, . . . , vn and is a subspace of V called the subspace spanned (or
generated) by v1, v2, . . . , vn.

(d) The set {v1, v2, . . . , vn} is a basis for V if it is linearly independent and spans V , i.e.,
Sp{v1, v2, . . . , vn} = V . The vector space V is then said to be finite-dimensional with
dimension n. If there does not exist any finite set that is a basis for V , then V is
infinite-dimensional.

Example 16.5. Consider the vector space V = Rn. The k-th standard basis vector is denoted by
ek and is defined as the vector in Rn that has a 1 in the k-th position and 0’s elsewhere, that is,

ek = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 is in the k-th position. The set of vectors {e1, . . . , en}, where each ek is a standard
basis vector, forms a basis for V . This set is linearly independent, and every vector in V can
be uniquely expressed as a linear combination of these basis vectors. Therefore, {e1, . . . , en} is
called the standard basis of Rn.

Theorem 16.6 (Infinite-Dimensional Subspace Theorem) — A vector space is infinite-
dimensional if it has an infinite-dimensional subspace.

Proof. Let W be an infinite-dimensional subspace of a vector space V , and suppose that V is
finite-dimensional, with dimension n, say. By what was just said, there exists a set of n linearly
independent vectors in W , which, since they belong also to V , must be a basis for V . Every
vector in V , which includes all those in W , is expressible as a linear combination of these basis
vectors, so they span W . Hence that set of n vectors is also a basis for W , contradicting the fact
that W is infinite-dimensional.

Proposition 16.7. C[a, b] is infinite-dimensional.

Proof. The space P [a, b] of polynomial functions defined on [a, b] is infinite-dimensional. To see
this, suppose by contradiction that {v1, . . . , vn} is a basis for P [a, b]. Let K = max{deg(vi) | i =
1, . . . , n}, where deg(vi) is the degree of polynomial vi. Then any polynomial with degree larger
than K cannot be written as a linear combination of v1, . . . , vn. This contradicts the fact that
{v1, . . . , vn} is a basis for P [a, b]. So P [a, b] is infinite-dimensional. By Theorem 1.11.4, C[a, b] is
infinite-dimensional, since P [a, b] is a subspace of C[a, b].
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Theorem 16.8 — The map ∥ · ∥∞ : V → R+, given by

∥x∥∞ = max
1≤k≤n

|αk|, where x =

n∑
k=1

αkvk ∈ V,

is a norm on V .

Proof. We need to check axioms (N1)–(N3) in the definition of a normed space. Since {v1, . . . , vn}
is a basis of V , ∥ · ∥∞ is well-defined (since the αk are uniquely determined). For x =

∑n
k=1 αkvk,

we clearly have x = 0 if and only if (αk = 0∀k) if and only if ∥x∥∞ = 0. So (N1) is satisfied.
Now, for any scalar α, we have

∥αx∥∞ =

∥∥∥∥∥
n∑

k=1

(ααk)vk

∥∥∥∥∥
∞

= max
1≤k≤n

|ααk| = |α| max
1≤k≤n

|αk| = |α| · ∥x∥∞.

Thus, (N2) is satisfied.
Finally, we must prove the triangle inequality. Let y =

∑n
k=1 βkvk be a second vector in V .

For k = 1, . . . , n, we have

|αk + βk| ≤ |αk|+ |βk| ≤ max
1≤k≤n

|αk|+ max
1≤k≤n

|βk| = ∥x∥+ ∥y∥.

Therefore,

∥x+ y∥∞ =

∥∥∥∥∥
n∑

k=1

(αk + βk)vk

∥∥∥∥∥
∞

= max
1≤k≤n

|αk + βk| ≤ ∥x∥∞ + ∥y∥∞.

So (N3) is satisfied.

Theorem 16.9 — Convergence in a finite-dimensional vector space with the norm ∥ · ∥∞
is equivalent to componentwise convergence. In other words, if {xm} is a sequence in a
finite-dimensional vector space with this norm, and xm =

∑n
k=1 αmkvk, then

{xm}∞m=1 converges ⇐⇒ {αmk}∞m=1 converges for each k = 1, 2, . . . , n.

(Here the convergence of {αmk}∞m=1 is in R or C.)

Proof. Suppose xm → x, with x =
∑n

k=1 αkvk. Then for all ε > 0, there exists an N > 0 such
that

m > N =⇒ ∥xm − x∥∞ = max
1≤k≤n

|αmk − αk| < ε.

Therefore, for each k = 1, . . . , n,

m > N =⇒ |αmk − αk| < ε.

Thus, {αmk}∞m=1 converges to αk for each k = 1, 2, . . . , n.
Now suppose that for each k = 1, 2, . . . , n, the sequence {αmk}∞m=1 converges to, say, αk. Then

for all ε > 0 and k = 1, 2, . . . , n, there exists an Nk such that

m > Nk =⇒ |αmk − αk| < ε.

Let N = max{N1, . . . , Nn} and x =
∑n

k=1 αkvk. Then

m > N =⇒ ∥xm − x∥∞ = max
1≤k≤n

|αmk − αk| < ε.

Thus {xm} converges to x.
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§17.1 Finite Dimensional Subspaces

Let V be a vector space of dimension n over a field, and let {v1, . . . , vn} be a basis for V . For
any vector x ∈ V , represented uniquely as x =

∑n
k=1 αkvk, we define the ∞-norm (or maximum

norm) of x as
||x||∞ = max

1≤k≤n
|αk|,

where αk are the coefficients of x in the basis {v1, . . . , vn}.

Lemma 17.1 — If ||xm − x|| → 0 ⇐⇒ αmk → αk for all k = 1, .., n. Here xm =∑n
k=1 αmkvk and x =

∑n
k=1 αkvk

Lemma 17.2 — Let V be a vector space of dimension n over a field, with a basis {v1, . . . , vn}.
Consider the sequences {xm} and {x} in V , where xm =

∑n
k=1 αmkvk and x =

∑n
k=1 αkvk.

Then, under the ∞-norm || · ||∞, the sequence {xm} converges to x (i.e., ||xm − x||∞ → 0)
if and only if for each k from 1 to n, the sequence of coefficients {αmk} converges to αk (i.e.,
αmk → αk).

a

aThis lemma states that in a finite-dimensional vector space with a specific basis, for a sequence of vectors
to converge to a given vector under the ∞-norm, it is necessary and sufficient that the sequence of each
individual coefficient (associated with the basis vectors) of these vectors converges to the corresponding
coefficient of the limit vector.

This convergence behavior is directly related to the nature of the ∞-norm, which focuses on the
maximum absolute value among the coefficients of the vector representation.

Theorem 17.3 — Let V be a vector space of dimension n. Consider the set

Q = {x ∈ V | ||x||∞ ≤ 1}.

Then, Q is a compact set in V (when V is equipped with the ∞-norm).

Proof. Not required for final
We assume V is a complex vector space (the case of a real vector space is almost identical). We
prove the result by induction on the dimension n of V . First suppose that n = 1 and that {v} is
a basis of V . Let

Z = {a ∈ C | |a| ≤ 1} = BC(0, 1),

which we know is compact in C (it is a closed and bounded subset of C, which is the same as R2

topologically). Define
A : Z → V, Av = av.

Then A(Z) = BV (0, 1). Since the continuous image of a compact set is compact (Theorem 4.4.7),
it suffices to show that A is continuous. Suppose {am} is a sequence in Z converging to a ∈ Z.
Then

∥Aam −Aa∥∞ = ∥(am − a)v∥∞ = |am − a| → 0.

Hence Aam → Aa and so A is continuous.

Now assume the proposition is true for n < h− 1 for some h > 1. We want to show that it is
true for n = h. Let

Bi = BV (0, 1)

when n = i, i ∈ N+. So our inductive assumption is that Bn is compact for n < h− 1 and we
wish to show that Bh is compact.
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Let {xm} be a sequence in Bh and let

xm =

h∑
j=1

αmjvj

for m ∈ N+. The sequence {αm1v1}∞m=1 is a sequence in B1, which is compact. Therefore, it has
a convergent subsequence {αmk1

v1}∞k=1. So
h∑

j=2

αmk,jvj


∞

k=1

is a subsequence of {xm} such that the sequence of coefficients of v1 converges. Then
h∑

j=2

αmk,jvj


∞

k=1

(5.1)

is a sequence in Span{v2, . . . , vh}, which is a vector space of dimension h− 1. Since, for k ∈ N+,∥∥∥∥∥∥
h∑

j=2

αmk,jvj

∥∥∥∥∥∥
∞

= max
2≤j≤h

|αmk,j | ≤ max
1≤j≤h

|αmk,j | = ∥xmk∥∞ ≤ 1,

it is a sequence in Bh−1. Since Bh−1 is compact by the inductive hypothesis, the sequence (5.1)
has a convergent subsequence. By Theorem 5.3.2, this subsequence converges componentwise.
Therefore the corresponding subsequence of {xm} also converges componentwise (since we had
already chosen a subsequence in which the first component converged) and hence converges.

Definition 17.4 (Equivalent Norms) Two norms || · ||1 and || · ||2 on a vector space V are said
to be equivalent if there exist constants a, b > 0 such that for all x ∈ V ,

a||x||1 ≤ ||x||2 ≤ b||x||1.

This means that the two norms are equivalent if they induce the same topology on V , i.e., a
sequence converges in one norm if and only if it converges in the other.

Theorem 17.5 (Equivalence of Norms in Finite-Dimensional Spaces) — In any finite-
dimensional vector space V , any two norms || · ||a and || · ||b are equivalent. That is,
there exist positive constants c and C such that for all vectors x ∈ V ,

c||x||a ≤ ||x||b ≤ C||x||a.

a

aThis implies that all norms on a finite-dimensional vector space induce the same topological structure,
meaning that notions of convergence, continuity, and compactness are the same under any norm.

Proof. We will only prove that any norm ∥ · ∥ for our vector space V is equivalent to the norm
∥ · ∥∞. That is, we will show that there exist positive numbers a and b such that

a∥x∥∞ ≤ ∥x∥ ≤ b∥x∥∞

for any x ∈ V . This readily implies the theorem, but the details are left as an exercise.
In Theorem 6.5.1, we showed that the subset Q = {x : ∥x∥∞ ≤ 1} of V is compact. It is

another simple exercise to use this fact, in conjunction with Exercise 4.5(3), to conclude that the
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set Q′ = {x : ∥x∥∞ = 1} in V is also compact. On any normed space, the norm is a continuous
mapping (Exercise 6.4(3)(c)) so we may invoke Theorem 4.3.2 to ensure the existence of points
xM and xm in Q′ such that

∥xM∥ = max
x∈Q′

∥x∥, ∥xm∥ = min
x∈Q′

∥x∥.

Thus ∥xm∥ ≤ ∥x∥ ≤ ∥xM∥ for all x ∈ Q′. Also, since ∥xm∥∞ = 1, we cannot have xm = 0, so
∥xm∥ > 0. For any nonzero vector x ∈ V , we have

1

∥x∥∞
x =

1

∥x∥∞
x ∈ Q′.

Hence, for x ̸= 0,

∥xm∥ ≤
∥∥∥∥ 1

∥x∥∞
x

∥∥∥∥ ≤ ∥xM∥.

We thus have
∥xm∥∥x∥∞ ≤ ∥x∥ ≤ ∥xM∥∥x∥∞,

or
a∥x∥∞ ≤ ∥x∥ ≤ b∥x∥∞,

where a = ∥xm∥ > 0 and b = ∥xM∥, and this is clearly true also when x = 0. Hence the norms
∥ · ∥ and ∥ · ∥∞ are equivalent.

Theorem 17.6 (Finite-Dimensional Spaces are Banach Spaces) — Every finite-dimensional
normed vector space is a Banach space. That is, if V is a vector space of finite dimension n
equipped with any norm || · ||, then V is complete with respect to this norm. In other words,
every Cauchy sequence in V converges to an element in V .

Proof. Let V be a finite-dimensional vector space with basis {v1, . . . , vn}. By Theorem 6.5.3, all
norms are equivalent. So, it is enough to prove that (V, ∥ · ∥∞) is a Banach space. Let {xm} be a
Cauchy sequence in V with respect to ∥ · ∥∞. Then

xm =

n∑
k=1

αmkvk with αmk scalars.

For any ε > 0, there exists N ∈ N such that

∥xm − xj∥∞ < ε for all m, j > N.

Note that xm − xj =
∑n

k=1 αmkvk −
∑n

k=1 αjkvk =
∑n

k=1(αmk − αjk)vk, and hence

∥xm − xj∥∞ = max
1≤k≤n

|αmk − αjk| < ε for all m, j > N.

This means that for all k = 1, . . . , n fixed,

|αmk − αjk| < ε for all m, j > N.

Hence, {αmk}m∈N is a Cauchy sequence in F (where F = R or F = C). Since F is complete, there
exists αk ∈ F such that

αmk → αk as m→ ∞, for k = 1, . . . , n.

By Lemma 1, we have that xm → x in (V, ∥ · ∥∞) where x =
∑n

k=1 αkvk. Hence {xm} converges
in (V, ∥ · ∥∞). This proves that (V, ∥ · ∥∞) is a complete space.

This theorem is significant because it ensures that many of the convenient properties of finite-
dimensional spaces (like Rn) hold more generally in any space with a finite number of dimensions,
regardless of the specific norm used. It’s a fundamental difference between finite-dimensional and
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infinite-dimensional spaces, where completeness is not guaranteed and depends heavily on the
chosen norm.
Next theorem is a key result in the context of finite-dimensional normed vector spaces. It

connects the concepts of compactness, sequential closedness, and boundedness.

Theorem 17.7 — Let S be a subset of a finite-dimensional normed vector space V . Then
S is compact if and only if it is sequentially closed and bounded.

This theorem is a variation of the Heine-Borel theorem, adapted to the language of sequential
closedness. In finite-dimensional spaces, the concepts of closed and bounded sets and sequentially
closed sets are often interchangeable in terms of leading to compactness, which is one of the
fundamental distinctions between finite and infinite-dimensional spaces.

§17.2 Approximation Theory

Let (X, d) be a metric space, and let S ⊆ X be a compact subset. For any point x ∈ X, there
exists a point p ∈ S such that

d(p, x) = min
y∈S

d(y, x),

which means p is the closest point in S to x, or the best approximation of x in S.

Theorem 17.8 — Let (X, || · ||) be a normed vector space, and let S ⊆ X be a finite-
dimensional subspace of X. For a fixed point x ∈ X, and assuming S ̸= ∅, there exists a
point p ∈ S such that

||p− x|| = min
y∈S

||y − x||,

which means p is the closest point in S to x, and is called the best approximation of x in S.

Proposition 17.9. Let f be a function in C[0, 1], the space of continuous functions on the
interval [0, 1], and let r be an integer greater than 1. Then, there exists a polynomial p of degree
less than r such that

||p− f || = min
g∈Sr

||g − f ||,

where ||f || = maxt∈[0,1] |f(t)| and Sr is the set of all polynomials of degree less than r.

The theorem essentially states that for any continuous function on [0, 1], there exists a polynomial
of degree less than r that is the best approximation of f in the uniform norm, among all polynomials
of degree less than r. This is a fundamental result in approximation theory and is related to the
Weierstrass approximation theorem.
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Theorem 18.1 (6.6.1) — Let X be a normed vector space and S ⊂ X a finite-dimensional
subspace, S ̸= ∅. Fix x ∈ X. Then there exists p ∈ S such that

∥p− x∥ = min
y∈S

∥y − x∥.

Proof. Let p0 ∈ S be arbitrary. We consider the following subset of S:

Y = {y ∈ S; ∥y − x∥ ≤ ∥p0 − x∥}.

We claim that Y ≠ ∅. Assume that Y = ∅. Then ∥y − x∥ > ∥p0 − x∥ for all y ∈ S which is a
contradiction since p0 ∈ S. Thus, there exists p ∈ Y such that

∥p− x∥ = min
y∈Y

∥y − x∥.

To prove that Y is compact, we need to show that Y is closed and bounded. Recall from
Theorem 6.5.5 that a subset of any finite-dimensional vector space is compact if it is closed and
bounded.

Y is closed: Let {yk} ⊂ Y be such that yk → y. We have to prove that y ∈ Y . For any ε > 0,
there exists N such that for all k > N ,

∥yk − x∥ < ∥p0 − x∥+ ε.

Since ε is arbitrary, we must have ∥y − x∥ ≤ ∥p0 − x∥. Hence y ∈ Y .
Y is bounded: For all y ∈ Y ,

∥y∥ = ∥y − x+ x∥ ≤ ∥y − x∥+ ∥x∥ ≤ ∥p0 − x∥+ ∥x∥ :=M.

Hence Y ⊂ B(0,M) where B(0,M) is the closed ball centered at the origin with radius M .
By Theorem 4.3.3, Y is compact. Therefore, the set Y is closed and bounded, and by the

previous argument, contains the point p which minimizes the distance to x. This completes the
proof.

Definition 18.2 (6.6.2) A normed vector space X is strictly convex if the equation

∥x+ y∥ = ∥x∥+ ∥y∥

holds only when x = βy for some β > 0 and x, y ∈ X \ {0}.

Note: If x = βy then

∥x+ y∥ = ∥βy + y∥ = ∥(β + 1)y∥ = (β + 1)∥y∥ = β∥y∥+ ∥y∥ = ∥x∥+ ∥y∥.

This illustrates that in a strictly convex space, the triangle inequality becomes
an equality if and only if the vectors are linearly dependent and pointing in the
same direction.

a) The space C[a, b] endowed with the norm

∥f∥2 =

(∫ b

a

|f(t)|2dt

) 1
2

is strictly convex (see Exercise 6.10.(5), Assignment 4).
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b) The space C[a, b] endowed with the uniform norm

∥f∥ = max
t∈[a,b]

|f(t)|

is not strictly convex.

Here is an example: let f(t) = bt and g(t) = t2 for t ∈ [a, b]. Assume 0 < a < b.

∥f∥ = max
t∈[a,b]

|bt| = b · max
t∈[a,b]

t = b2

∥g∥ = max
t∈[a,b]

|t2| = b2

∥f + g∥ = max
t∈[a,b]

|bt+ t2| = max
t∈[a,b]

|t(b+ t)| = b2 + b3 = 2b2 = ∥f∥+ ∥g∥

Hence, condition (2) holds. But f ̸= βg for some β > 0.

Theorem 18.3 (6.6.3) — Let X be a strictly convex normed vector space, and S ⊆ X a
finite-dimensional subspace, S ≠ ∅. Fix x ∈ X. Then, there exists a unique p ∈ S such that

∥p− x∥ = min
y∈S

∥y − x∥.

Proof. Case 1: x ∈ S. Then miny∈S ∥y − x∥ = ∥x − x∥ = 0, so the minimum is achieved for
p = x, which is unique.

Case 2: x ̸∈ S. The existence of p is given by Theorem 6.6.1. Assume that there exists another
point p′ ∈ S such that

∥p′ − x∥ = ∥p− x∥ = min
y∈S

∥y − x∥ =: d.

Now, since S is a vector space, 1
2 (p+ p′) ∈ S and

d ≤ ∥x− 1

2
(p+ p′)∥ =

1

2
∥x− p∥+ 1

2
∥x− p′∥ ≤ 1

2
∥x− p∥+ 1

2
∥x− p′∥ = d.

Hence ∥x− 1
2 (p+ p′)∥ = d so 1

2 (p+ p′) is also a best approximation of x. (This averaging process
can be continued indefinitely to show the existence of infinitely many best approximations in a
normed space once there are two different best approximations.) It follows that

∥x− 1

2
(p+ p′)∥ =

1

2
∥x− p∥+ 1

2
∥x− p′∥,

from which, since X is strictly convex,

x− p = β(x− p′)

for some number β > 0. If β ̸= 1, we get

x =
1

1− β
p− β

1− β
p′.

This is impossible since it represents x as belonging to the vector space S, whereas x ̸∈ S. So we
must have β = 1. Thus p = p′ and we have proved that the best approximation is unique.
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Definition 19.1 Let X,Y be normed vector spaces and S ⊆ X a subset. A map A : S → Y
is uniformly continuous on S if for every ε > 0 there exists a δ > 0 such that

∥Ax′ −Ax′′∥ ≤ ε for all x′, x′′ ∈ S with ∥x′ − x′′∥ < δ.

Theorem 19.2 — Let X,Y be normed vector spaces and S ⊆ X a compact subset of X,
S ̸= ∅. If A : S → Y is continuous on S, then A is also uniformly continuous.

Proof. Suppose that A is not uniformly continuous on S. This means that there is some number
ϵ > 0 such that, regardless of the value of δ, there are points x′, x′′ ∈ S with ∥x′ − x′′∥ < δ but
for which ∥Ax′ −Ax′′∥ ≥ ϵ. Take δ = 1/n, for n = 1, 2, . . . in turn, and for each n let x′n, x

′′
n be

points in S (known to exist by our supposition) such that

∥x′n − x′′n∥ <
1

n
and ∥Ax′n −Ax′′n∥ ≥ ϵ.

As S is compact, the sequence {x′n} has a convergent subsequence {x′nk
}, with limit x, say.

Take any number η > 0. There exists a positive integer K such that ∥x′nk
− x∥ < η/2 when

k > K. We may suppose K > 2/n for such k, nk ≥ k > 2/n and

∥x′′nk
− x∥ ≤ ∥x′′nk

− x′nk
∥+ ∥x′nk

− x∥ < 1

nk
+
η

2
< η,

so that {x′′nk
} is a convergent subsequence of {x′′n}, also with limit x. Further, the sequence

Ax′n1
, Ax′′n1

, Ax′n2
, Ax′′n2

, . . . in Y must converge with limit Ax. Hence there is an integer N such
that, when k > N ,

∥Ax′nk
−Ax′′nk

∥ ≤ ∥Ax′nk
−Ax∥+ ∥Ax′′nk

−Ax∥ < η

2
+
η

2
= η,

and this gives us a contradiction. Thus A is indeed uniformly continuous on S.

Corollary 19.3

Let X be a finite-dimensional normed vector space, and S ⊆ X be a closed and bounded
subset of X. Let Y be a normed vector space and A : S → Y . If A is continuous on S then
A is also uniformly continuous on S.

Proof. By Theorem 6.5.5, S is compact. The conclusion follows from Theorem 6.8.2.

§19.1 The Weierstrass approximation theorem

Theorem 19.4 (Weierstrass Approximation Theorem) — For any f ∈ C[0, 1] and for any
ϵ > 0, there exists a polynomial p such that

∥p− f∥ < ϵ, i.e. |p(x)− f(x)| < ϵ ∀x ∈ [0, 1].

Recall: ∥f∥ = maxx∈[0,1] |f(x)| is the uniform norm on C[0, 1].

Proof. We define Bernstein polynomial for f , of degree n, by:

Pn(x) =

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k
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Then

f(x) = f(0) · (1− x)n +

n−1∑
k=1

(
n

k

)
f

(
k

n

)
xk(1− x)n−k + f(1) · xn

and

|f(x)− Pn(x)| ≤
n∑

k=0

|f(x)− f

(
k

n

)
| ·
(
n

k

)
xk(1− x)n−k (5)

Since f is continuous on a compact interval, f is uniformly continuous. Let ϵ > 0 be arbitrary.
Then ∃δ > 0 s.t.

|f(x′)− f(x′′)| < ϵ

2
for all x′, x′′ ∈ [0, 1] with |x′ − x′′| < δ (6)

Fix x ∈ [0, 1]. Consider

S1 =

{
k ∈ {0, 1, . . . , n} |

∣∣∣∣kn − x

∣∣∣∣ < δ

}
, S2 =

{
k ∈ {0, 1, . . . , n} |

∣∣∣∣kn − x

∣∣∣∣ ≥ δ

}
Clearly S1 ∪ S2 = {0, 1, . . . , n} and S1 ∩ S2 = ∅. Note that:

If k ∈ S1 then |f(x)− f

(
k

n

)
| < ϵ

2
due to (6)

If k ∈ S2 then |f(x)− f

(
k

n

)
| ≤ |f(x)− f(0)|+ |f

(
k

n

)
− f(0)| ≤ 2||f ||∞

Coming back to (5), we obtain:

|f(x)−Pn(x)| ≤
∑
k∈S1

|f(x)−f
(
k

n

)
| ·
(
n

k

)
xk(1−x)n−k+

∑
k∈S2

|f(x)−f
(
k

n

)
| ·
(
n

k

)
xk(1−x)n−k

≤ ϵ

2

∑
k∈S1

(
n

k

)
xk(1− x)n−k + 2||f ||∞

∑
k∈S2

(
n

k

)
xk(1− x)n−k (7)

For the first sum, we use:

∑
k∈S1

(
n

k

)
xk(1− x)n−k ≤

n∑
k=0

(
n

k

)
xk(1− x)n−k = 1

For the second sum, we use:

∑
k∈S2

(
n

k

)
xk(1− x)n−k =

1

δ2

∑
k∈S2

(
k

n
− x

)2(
n

k

)
xk(1− x)n−k

≤ 1

δ2

n∑
k=0

(
k

n
− x

)2(
n

k

)
xk(1− x)n−k

=
1

δ2
· 1

n2

n∑
k=0

(k − nx)2
(
n

k

)
xk(1− x)n−k

=
x(1− x)

δ2n
.

Returning to (7), we get:

|f(x)− Pn(x)| ≤
ϵ

2
· 1 + 2∥f∥∞ · x(1− x)

δ2n
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For any ϵ > 0 fixed, there exists N ∈ N such that

2∥f∥∞ · x(1− x)

δ2n
<
ϵ

2
for all n > N.

Hence, for all n > N ,

|f(x)− Pn(x)| <
ϵ

2
+
ϵ

2
= ϵ.
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§20.1 Bounded Linear Mappings

Definition 20.1 (Linear map) Let X and Y be vector spaces. A map A : X → Y is linear if

A(α1x1 + α2x2) = α1Ax1 + α2Ax2, ∀α1, α2 ∈ F,∀x1, x2 ∈ X.

Definition 20.2 (Bounded map) Let X and Y be normed vector spaces. A map A : X → Y
is bounded if there exists K > 0 such that

∥Ax∥ ≤ K∥x∥, ∀x ∈ X.

Observation: A function f : X → R is bounded if there exists K > 0 such that

|f(x)| ≤ K, ∀x ∈ X.

Definition 20.3 (Operator) Let X and Y be normed vector spaces. A map A : X → Y which
is linear and bounded is called an operator.

Theorem 20.4 — Let X and Y be normed vector spaces and A : X → Y be a linear map.
If A is continuous at x0 ∈ X, then A is continuous on X.

Proof. Let xn ∈ X be arbitrary. Let {xn} be a sequence in X s.t. xn → x. Then xn − x → 0
and hence xn − x+ x0 → x0. Since A is continuous at x0, A(xn − x+ x0) → Ax0 (sequentially).

By linearity of A, A(xn − x+ x0) = Axn −Ax+Ax0. Hence Axn −Ax→ 0, i.e., Axn → Ax.
Hence A is (sequentially) continuous at x.

Theorem 20.5 — Let X and Y be normed vector spaces. Let A : X → Y be a linear map.
Then A is continuous on X if and only if A is bounded.

Proof. (⇒) Suppose that A is bounded, i.e., there exists K > 0 such that

∥Ax∥ ≤ K∥x∥, ∀x ∈ X. (1)

Let xn ∈ X be arbitrary and {xn} be a sequence in X with xn → x. Let ε > 0 be arbitrary.
Then there exists N such that if n > N , ∥xn − x∥ < ε. Then

∥Axn −Ax∥ = ∥A(xn − x)∥ ≤ K∥xn − x∥ < Kε, for all n > N,

which proves that Axn → Ax, i.e., A is continuous at x. By Theorem 2.1, A is continuous on X.

(⇐) Assume that A is continuous on X. We want to prove that A is bounded. Suppose
by contradiction that A is not bounded; this means that ∀K > 0 there exists xk ∈ X s.t.
∥Axk∥ > K∥xk∥. We apply this for K = n ∈ N. Then we find xn ∈ X s.t.

∥Axn∥ > n∥xn∥, for all n ∈ N.

Note that since A is linear, A0 = 0 because A0 = A(x− x) = Ax−Ax = 0. Hence xn ̸= 0, and
therefore ∥xn∥ ≠ 0, using (N). Define

yn =
1

n∥xn∥
xn.
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Then

Ayn = A

(
1

n∥xn∥
xn

)
=

1

n∥xn∥
Axn

and

∥Ayn∥ =

∥∥∥∥ 1

n∥xn∥
Axn

∥∥∥∥ =
∥Axn∥
n∥xn∥

> 1, for all n.

On the other hand,

∥yn∥ =

∥∥∥∥ 1

n∥xn∥
xn

∥∥∥∥ =
1

n
→ 0, hence yn → 0.

Since A is continuous, Ayn → A0 = 0, hence there exists N s.t. ∥Ayn∥ < 1 for all n > N . This is
a contradiction.

Example 20.6. example of an operator on a normed space X is the mapping A defined by

Ax = βx, x ∈ X,

for some fixed scalar β. It is indeed linear, since

A(α1x1 + α2x2) = β(α1x1 + α2x2) = α1Ax1 + α2Ax2,

for x1, x2 ∈ X, scalars α1, α2. And it is bounded, since

∥Ax∥ = ∥βx∥ = |β|∥x∥

so ∥Ax∥ ≤ K∥x∥ for some constant K (such as |β| or any larger number). If β = 1, A is the
identity operator or unit operator on X and is denoted by I. Thus I maps every element of X
into itself. If β = 0, A is called the zero operator on X and maps every element of X into θ.

Example 20.7. For a second example, we take the mapping A : C[a, b] → C[a, b] defined by the
equation Ax = y where

y(s) = λ

∫ b

a

k(s, t)x(t) dt, x ∈ C[a, b], a ≤ s ≤ b.

Here, k is a function of two variables, which is continuous in the square [a, b]× [a, b], and λ is a
given nonzero real number. The mapping A is linear, since, for x1, x2 ∈ C[a, b], scalars α1, α2,
and any s ∈ [a, b],

(A(α1x1 + α2x2))(s) = λ

∫ b

a

k(s, t)(α1x1(t) + α2x2(t)) dt

= α1λ

∫ b

a

k(s, t)x1(t) dt+ α2λ

∫ b

a

k(s, t)x2(t) dt

= (α1Ax1)(s) + (α2Ax2)(s);

that is, A(α1x1 + α2x2) = α1Ax1 + α2Ax2. Also, A is bounded. To see this, let M be a positive
constant such that |k(s, t)| ≤M for (s, t) in the square. Then

∥Ax∥ = ∥y∥ = max
a≤s≤b

|y(s)| = max
a≤s≤b

∣∣∣∣∣λ
∫ b

a

k(s, t)x(t) dt

∣∣∣∣∣
≤ |λ| max

a≤s≤b

∫ b

a

|k(s, t)||x(t)| dt

≤ |λ|M max
a≤s≤b

|x(t)| · (b− a)

= |λ|M(b− a)∥x∥.

62



63

Thus, for K = |λ|M(b− a), say, we have ∥Ax∥ ≤ K∥x∥ for all x ∈ C[a, b], so A is bounded. This
verifies that A is indeed an operator.
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§21 December 4, 2023

§21.1 Norm of operators

Theorem 21.1 — Let X and Y be normed vector spaces, and A : X → Y an operator. Let

a = inf{K > 0; ∥Ax∥ ≤ K∥x∥,∀x ∈ X},
b = sup{∥Ax∥;x ∈ X,x ̸= 0},

c = sup{∥Ax∥
∥x∥

;x ∈ X, ∥x∥ = 1},

d = sup{∥Ax∥;x ∈ X, ∥x∥ ≤ 1}.

Then:

(a) ∥Ax∥ ≤ a∥x∥,∀x ∈ X,

(b) a = b = c = d.

Proof. Recall (MAT 2125): If S ⊆ R and a = inf S, then:

• a ≤ x for all x ∈ S

• For every ε > 0 there exists xε ∈ S such that a ≤ xε < a+ ε

In our case, S = {k > 0 | ∥Ax∥ ≤ k∥x∥ for all x ∈ X}. Let ε0 be arbitrary. By the definition
above, kε ∈ S such that a ≤ kε < a+ ε.
kε ∈ S means that ∥Ax∥ ≤ kε∥x∥ for all x ∈ X. Hence, for any x ∈ X fixed, ∥Ax∥ < (a+ ε)∥x∥
for all ε > 0. Letting ε→ 0, we obtain: ∥Ax∥ ≤ a∥x∥.

We will show that a ≤ b ≤ c ≤ d ≤ a by definition, b ≥ ∥Ax∥ for all x ∈ X,x ̸= 0. So ∥A∥ ≤ b for
all x ̸= 0. Hence, b ∈ S and ∥Ax∥ ≤ k∥x∥ for all x ∈ X and therefore b ≥ a, by property a) of
the inf given above.

Fix x ∈ X,x ̸= 0. Then ∥Ax∥
∥x∥ ≤ c, and since this is true for any x ∈ X,x ≠ 0, we infer that b ≤ c.

Here we use the fact that if α ≤ c for all x, then supS ≤ c ( S ⊆ R ).

Here we use the fact that if S1 ⊆ S2 ⊆ R then supS1 ≤ supS2. In our case, S1 = {∥Ax∥ | x ∈
X, ∥x∥ = 1} and S2 = {∥Ax∥ | x ∈ X, ∥x∥ ≤ 1}, hence supS1 = c ≤ supS2 = d.

By a), for any vector x ∈ X with ∥x∥ ≤ 1, we have ∥Ax∥ ≤ a∥x∥ ≤ a. Taking the supremum over
all such x, we obtain d ≤ a. Therefore, a ≤ b ≤ c ≤ d ≤ a, and thus a = b = c = d and X is a
normed space with ∥A∥ = a.

Definition 21.2 Let A : X → Y be an operator between normed vector spaces X and Y .
The norm of A is:

∥A∥ = inf{k > 0 | ∥Ax∥ ≤ k∥x∥ for all x ∈ X} (= a in Th 7.2.1)

Theorem 21.3 — Let B(X,Y ) be the set of all operators A : X → Y , where X and Y
are normed vector spaces. Then B(X,Y ) is a vector space, equipped with the following
operations:

(A1 +A2)x = A1x+A2x for all x ∈ X

(αA)x = αAx for all α ∈ F, x ∈ X

Proof: Exercise: Check that the 8 axioms of Definition 1.1.1 are satisfied.

Remark 21.4. By Theorem 7.2.1 a), ∥Ax∥ ≤ ∥A∥∥x∥ for all x ∈ X (2).
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Example 21.5. Let A : X → X be given by Ax = βx for some β ∈ F. Then

∥A∥ = sup{∥Ax∥ | x ∈ X, ∥x∥ = 1} = sup{|βx∥ | x ∈ X, ∥x∥ = 1} = |β|

Use the fact that a = c in Th 7.2.1.
In particular, if β = 1, we obtain the identity operator I : A→ A given by Ix = x, and ∥I∥ = 1.

Theorem 21.6 — B(X,Y ) with the operator norm ∥ · ∥ is a normed vector space.

Proof. We prove the three properties.

(M1): If A = 0 then clearly ∥A∥ = 0 since ∥Ax∥ = ∥0x∥ = 0 ∀x.

Assume that ∥A∥ = 0. Note that 0 = ∥A∥ = sup
{

∥Ax∥
∥x∥ | x ∈ X,x ̸= 0

}
. Hence ∥Ax∥

∥x∥ = 0

for all x ∈ X,x ̸= 0. This means that ∥Ax∥ = 0, and hence Ax = 0 for all x ∈ X,x ̸= 0.
Clearly A0 = 0. Hence A = 0.

•• (M2): ∥(αA)x∥ = ∥αAx∥ = |α|∥Ax∥ ≤ |α|k∥x∥ ∀x ∈ X,x ̸= 0 (assuming α ̸= 0 and
A ̸= 0). Hence ∥αA∥ ≤ |α|∥A∥. We want to prove that ∥αA∥ ≥ |α|∥A∥. Let x ∈ X be
arbitrary. Then ∥αAx∥ = ∥α−1(αA)x∥ ≤ |α−1|∥(αA)x∥ ≤ |α−1| · |α|∥A∥∥x∥ = ∥A∥∥x∥ for
all x. Hence, ∥αA∥ ≤ |α|∥A∥ so ∥αA∥ = |α|∥A∥.

• (M3): ∥(A1+A2)x∥ = ∥A1x+A2x∥ ≤ ∥A1x∥+∥A2x∥ ≤ ∥A1∥∥x∥+∥A2∥∥x∥ for all x ∈ X.
Here A1, A2 ̸= 0 so that A1 +A2 ̸= 0. This proves that ∥A1 +A2∥ ≤ ∥A1∥+ ∥A2∥.

So, B(X,Y ) is a normed vector space.

Theorem 21.7 — If Y is a Banach space, then B(X,Y ) is also a Banach space.

Proof. We use Theorem 6.2.2 (from textbook): we show that every absolutely convergent series
in B(X,Y ) is convergent.
Let

∑∞
i=1Ai be an absolutely convergent series in B(X,Y ). This means that

∑∞
i=1 ∥Ai∥

converges in R. For x ∈ X, define

yn =

n∑
i=1

Aix.

Let ε > 0 be arbitrary. Since {
∑n

i=1 ∥Ai∥}∞n=1 is a Cauchy sequence, there exists N ∈ N such
that for n > m > N , ∣∣∣∣∣

n∑
i=1

∥Ai∥ −
m∑
i=1

∥Ai∥

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=m+1

∥Ai∥

∣∣∣∣∣ < ε.

Note that for n > m > N ,

∥yn − ym∥ =

∥∥∥∥∥
n∑

i=m+1

Aix

∥∥∥∥∥ ≤
n∑

i=m+1

∥Aix∥ ≤
n∑

i=m+1

∥Ai∥∥x∥ < ε∥x∥.

This proves that {yn} is a Cauchy sequence in Y . Since Y is a Banach space, limn→∞ yn exists
in Y .
Basically, y =

∑∞
i=1Aix. We define A : X → Y by setting Ax = y. Note that A is linear and

bounded, which is left as an exercise.
Finally, we show that A =

∑∞
i=1Ai in B(X,Y ), i.e.

∑n
i=1Ai → A in B(X,Y ). Let ε > 0 be

arbitrary. Recall that there exists N ∈ N such that for n > N ,

∥A−
n∑

i=1

Ai∥ < ε.

This shows (4).
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